Golgappa.net | Golgappa.org | BagIndia.net | BodyIndia.Com | CabIndia.net | CarsBikes.net | CarsBikes.org | CashIndia.net | ConsumerIndia.net | CookingIndia.net | DataIndia.net | DealIndia.net | EmailIndia.net | FirstTablet.com | FirstTourist.com | ForsaleIndia.net | IndiaBody.Com | IndiaCab.net | IndiaCash.net | IndiaModel.net | KidForum.net | OfficeIndia.net | PaysIndia.com | RestaurantIndia.net | RestaurantsIndia.net | SaleForum.net | SellForum.net | SoldIndia.com | StarIndia.net | TomatoCab.com | TomatoCabs.com | TownIndia.com
Interested to Buy Any Domain ? << Click Here >> for more details...


What is the most common carrier gas used in pneumatic conveying?


No Answer is Posted For this Question
Be the First to Post Answer

Post New Answer

More Chemical Engineering Interview Questions

hi sir/madam i need placement paper of last years of DRDO in chemical sream...... send me the question paper as soon as possible on my email address praveen.zone@gmail.com

0 Answers  


PETROLEUM ENGINEERING - QUESTION 25.1 : Fact 1 : Dry air contains 20.95 % oxygen, 78.09 % nitrogen, 0.93 % argon, 0.039 % carbon dioxide, and small amounts of other gases by volume. Fact 2 : Volume occupied is directly proportional to the number of moles for ideal gases at constant temperature and pressure. Fact 3 : 12.5 moles of pure oxygen is required to completely burn 1 mole of pure octane. Fact 4 : Air-fuel ratio (AFR) is the mass ratio of dry air to fuel present in a combustion process such as in an internal combustion engine or industrial furnace. Fact 5 : Molecular weight of oxygen gas is 31.998 g / mole and molecular weight of nitrogen gas is 28.014 g / mole. (a) Find the molar ratio of nitrogen and oxygen, or (moles of nitrogen) / (moles of oxygen) in dry air, by assuming ideal features of nitrogen and oxygen gases. (b) How many moles of nitrogen are available if dry air is used to completely burn the 1 mole pure octane? (c) Find the mass of fuel of 1 mole of octane with molecular weight of 114.232 g / mole. (d) Find the mass of dry air with 12.5 moles of pure oxygen by assuming only oxygen and nitrogen gases exist in the air. (e) Find the air-fuel ratio (AFR) when octane is used as fuel. (f) Find the fuel-air ratio (FAR) when octane is used as fuel.

1 Answers  


What is a surfactant?

0 Answers  


what is isothermal process?

1 Answers   Coromandel,


what is the height between the reflux pump and condenser ?

4 Answers  


I am a Diploma Chemical Engineer by Nirma Uni; and BEng (Hons) Energy & Environmental Engineer by Napier Uni; Edinburg, UK. HPCL chemical engineering test will held on 14th July,09. So, Please send me some previous chemical engineering papers Objective types Or material to give the test.

0 Answers   HPCL,


Question 45 - According to Raoult’s law for ideal liquid, x (PSAT) = yP where x is mole fraction of component in liquid, y is mole fraction of component in vapor, P is overall pressure and PSAT is saturation pressure. A liquid with 60 mole % component 1 and 40 mole % component 2 is flashed to 1210 kPa. The saturation pressure for component 1 is ln (PSAT) = 15 - 3010 / (T + 250) and for component 2 is ln (PSAT) = 14 - 2700 / (T + 205) where PSAT is in kPa and T is in degree Celsius. By assuming the liquid is ideal, calculate (a) the fraction of the effluent that is liquid; (b) the compositions of the liquid and vapor phases. The outlet T is 150 degree Celsius.

1 Answers  


What steps can be taken to avoid stress corrosion cracking (SCC) in steel vessels used for storing anhydrous ammonia?

0 Answers   ABC,


hai....i am chandrika. if anybody having test questions for HAL,HPCL,ONGC,IOL...PLS SEND THE QUES WITH SOLVED ANSWERS TO ME TO MY MAIL ID chandrismiles@yahoo.co.uk

0 Answers   HAL,


what is the difference between distillation column and distillation tower?

3 Answers  


A cylinder having water is being evacuated with constant rate. what is the relation between pressure which is existing in cylinder with time? (P and t relation)

2 Answers  


ENVIRONMENTAL ENGINEERING - QUESTION 22.2 : Biochemical Oxygen Demand (BOD) could be calculated using the formula BOD = (DOi - DOf) (Vb / Vs) where Vb = Volume of bottle in ml, Vs = Volume of sample in ml, DOi = Initial dissolved oxygen in mg / L, DOf = Final dissolved oxygen in mg / L. (a) By using a bottle of Vb = 300 ml with sample Vs = 30 ml, find the BOD if DOi = 8.8 mg / L and DOf = 5.9 mg / L. (b) By using a bottle Vb = 600 mL with sample Vs = 100 mL, find the BOD if DOi = 8.8 mg / L and DOf = 4.2 mg / L. (c) Find the average BOD = [ Answer of (a) + Answer of (b) ] / 2. (d) If the BOD-5 test for (a) - (c) is run on a secondary effluent using a nitrification inhibitor, find the nitrogenous BOD (NBOD) = TBOD - CBOD. Let TBOD = 45 mg / L and CBOD = Answer of (c).

1 Answers  


Categories
  • Civil Engineering Interview Questions Civil Engineering (5086)
  • Mechanical Engineering Interview Questions Mechanical Engineering (4456)
  • Electrical Engineering Interview Questions Electrical Engineering (16639)
  • Electronics Communications Interview Questions Electronics Communications (3918)
  • Chemical Engineering Interview Questions Chemical Engineering (1095)
  • Aeronautical Engineering Interview Questions Aeronautical Engineering (239)
  • Bio Engineering Interview Questions Bio Engineering (96)
  • Metallurgy Interview Questions Metallurgy (361)
  • Industrial Engineering Interview Questions Industrial Engineering (259)
  • Instrumentation Interview Questions Instrumentation (3014)
  • Automobile Engineering Interview Questions Automobile Engineering (332)
  • Mechatronics Engineering Interview Questions Mechatronics Engineering (97)
  • Marine Engineering Interview Questions Marine Engineering (124)
  • Power Plant Engineering Interview Questions Power Plant Engineering (172)
  • Textile Engineering Interview Questions Textile Engineering (575)
  • Production Engineering Interview Questions Production Engineering (25)
  • Satellite Systems Engineering Interview Questions Satellite Systems Engineering (106)
  • Engineering AllOther Interview Questions Engineering AllOther (1379)