ENGINEERING NUMERICAL METHODS - EXAMPLE 19.2 : For a mixture of benzene (B), toluene (T) and xylene (X), the equation applies where x for B, T and X will sum up to 1. The equation of x for each component is x = (L / V + 1) (F) / (L / V + K). The data of F for each component are : 0.5 for B, 0.35 for T, 0.15 for X. The data of K for each component are : 1.98 for B, 0.76 for T, 0.24 for X. When x for B + x for T + x for X = 1, find the values of (a) L / V; (b) x for each component of B, T, X respectively. You may use Excel program - Data : What-If-Analysis for Goal Seek to perform the iterative calculations.
ENGINEERING NUMERICAL METHODS - ANSWER 19.2 : By using Excel program, L / V = 0.654. The data of x are : 0.31 for B, 0.41 for T, 0.28 for X. You may bring your own calculator on laptop or phone with Excel program to assist the trial and error. The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.
Is This Answer Correct ? | 0 Yes | 0 No |
how will we calculate the heat of formation through electron...??
What is the procedure to estimate the friction factor involved in heat exchanger tubes?
why 14.7 pound/inch2 is used in idustries as unit of pressure bcz here not sea level and not a temperature is 0C (zero degree celcius)?????????
can anybody give me syallbus of chemical engineering for section engineer in railway.
what is the various utilities of the process plant?
QUANTUM COMPUTING - EXAMPLE 32.6 : (a) Let H | 0 > = 0.707 ( | 0 > + | 1 > ), H | 1 > = 0.707 ( | 0 > - | 1 > ). Find the values for H | 0 > + H | 1 > and H | 0 > - H | 1 >. (b) In quantum computing, a qubyte is a quantum byte, or 8 quantum bits, a sequence processed as a unit. A qubit is a quantum bit. According to Alexander Holevo in his theorem, n qubits cannot carry more than n classical bits of information. What is the maximum amount of classical bits of information that can be carried by 1 qubyte.
ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.22 : An engineering company intends to produce a small piece of biochemical instrument for sales. Let A = overall fixed cost of production, B = variable cost of production per unit, C = selling price per unit, D = quantity of unit produced. Breakeven Analysis is used where revenue = cost. (a) Explain the role of Breakeven Analysis by using A, B, C and D. (b) Find the value of Contribution Margin in term of A, B, C and / or D. (c) At the breakeven point where revenue = cost, derive an equation of D as a function of A, B and C.
How many days we are store our cement bags?
What is the Import Procurement Cycle ? and what are the customization steps in SAP ?
X is strong but has a very low density (1% of traditional earth materials.) and hence light weight. It is a recyclable material. The compression behaviour of X is strain rate dependent. Higher strain rates result in higher initial modulus and higher compression strength. It can also withstand unlimited number of cycling loading provided the repetitive loads are kept below 80% of the compressive strength. The internal structure of the material includes air-traps which make it poor heat conductor. X is non- biodegradable and chemically inert in both soil and water. Most acids and their water solutions do not attack it; however strong oxidizing acids do. Solvents which attack X include esters, ketones, ethers, aromatic and aliphatic hydrocarbons and their emulsions, among others. It does not support bacterial/fungal growth as well .It also has significant acoustic properties and effectively reduces the transmission of airborne sound. X is combustible and should not be exposed to open flame or other ignition sources. Combustion products are carbon monoxide, carbon dioxide, water and soot. Long-term exposure to sunlight causes yellowing and a slight embrittlement of the surface due to ultraviolet light. X is able to withstand the rigours of temperature cycling, assuring long-term performance.
What are the effects of oils on the properties of Polyolefins?
ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.34 : A biochemical engineering company has stock P = 20,000 shares of M % preferred stock of Q = $100 par and N number of shares of $20 par common stock. In year 1 : $10,000 is distributed as dividend. In year 2 : $25,000 is distributed as dividend. Let (Total Dividend) = (Dividend for Preferred Stock) + (Dividend for Common Stock). (a) In year 1, calculate the amount distributed as dividend for preferred stock, when no dividend was distributed for common stock. (b) In year 2, the amount distributed for common stock was $5000. Find the values of M and N, when the dividend per share for common stock is $0.05.