Question 33 – By using Excel program either on laptop or desktop PC, solve the differential equation dy / dx = -2y + x + 4 with h = 0.005, initial values : x = 0, y = 1. The 4th order Runge-Kutta method provides : y(N + 1) = y(N) + (1/6) (k1 + 2k2 +2k3 + k4), k1 = h [ -2y(N) + x(N) + 4 ], k2 = h { -2 [ y(N) + k1 / 2 ] + x(N) + h / 2 + 4 }, k3 = h { -2 [ y(N) + k2 / 2 ] + x(N) + h / 2 + 4 }, k4 = h { -2 [ y(N) + k3 ] + x(N) + h + 4 }. What is the value of y at x = 0.5?
Answer / kang chuen tat (malaysia - pen
Answer 33 : Programming method will provide y = 1.709 when x = 0.5. The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.
| Is This Answer Correct ? | 0 Yes | 0 No |
What is the method adopted to minimize shell side pressure drop in a shell?
what is unit operation?
8 Answers Sun Pharma, Zydus Cadila,
Question 94 - The resolution of separation, Rs for chromatography is given by the formula Rs = (difference in retention time) / (average width at the base). In a chromatogram, 3 peaks a, b and c are found. Average widths W at the bases of the solutes are : Wa = 20 s, Wb = 40 s, Wc = 30 s. Resolutions of separation, Rs for solutes b and c in comparison to a are 2 and 4 respectively. The differences in retention times T for b and c in comparison to a are (Tb - Ta) and (Tc - Ta), Ta = Tc - Tb : (a) Form 2 equations involving Rs as a function of Wa, Wb, Wc, Ta, Tb and Tc. (b) Find the values of Ta, Tb and Tc.
Which book I should refer for designing heat exchangers and reactors?
ELECTRICAL TECHNOLOGY - EXAMPLE 16.1 : According to Shockley equation, the I - V characteristic of a diode is approximated by I = IS [ exp (nVD / VT) - 1 ]. For silicon, let the reverse bias saturation current IS as 0.000000000001. If n is ideality factor with value of 1.5, VT as thermal voltage drop of 0.026 V at room temperature, what is the value of current I that passes through the silicon diode in the heater of evaporator when the forward voltage drop VD = 0.026 V? Please take note that exp is the exponential function with e(1) = 2.718, e(2) = 7.389.
Explain how can you separate hydrogen peroxide into hydrogen and oxygen?
repected sir i have given gate exam today.......... if i ll get the better rank in that ....what is the next process .....shall i give another one test......or wat....i dint get properlly..... plz help me or mail me on Nish_gasti@yahoo.co.in
THERMODYNAMIC - EXAMPLE 10.2 : A cylinder with a movable piston contains 0.1 mole of a monoatomic ideal gas. The piston moves through state a, b and c. The heat Q, changes from state c to a is + 685 J. The work W, changes from state c to a is - 120 J. The work, W performed from state a to b then to c is 75 J. By using the first law of thermodynamic, U = Q + W where U is the internal energy : (a) Determine the change in internal energy between states a and c. (b) Is heat added or removed from the gas when the gas is taken along the path abc? (c) Calculate the heat added or removed when the gas is taken along the path abc?
CHEMICAL MATERIAL BALANCE - EXAMPLE 2.1 : Two methanol-water mixtures are contained in separate tanks. The first mixture contains 40.0 wt % methanol and the second contains 70.0 wt % methanol. If 200 kg of the first mixture is combined with 150 kg of the second, what are the mass and composition of the product? The symbol of weight percent is wt %.
MICROBIOLOGICAL ENGINEERING - QUESTION 28.1 : In the calculation of the growth of bacteria, colony forming unit (CFU) in serial dilution is used. In a laboratory, viable count assay is used to estimate CFU. Formula applied is CFU / mL = (number of colonies x dilution) / (amount plated, in unit mL). Acceptable plate count is either between 20 and 200 or between 30 and 300 according to 2 different references. A wastewater sample of 200 ml is added to and mixed with 1.8 L of sterile water. Another 200 ml of the mixture is added to and mixed with 1.8 L of sterile water. (a) Calculate the dilution of first mixture and the dilution of the second mixture. (b) 100 microlitres of wastewater samples from the first mixture and the second mixture are placed separately on 2 different alga plates. The first plate has 250 colonies and the second plate has 23 colonies. Calculate the average CFU / mL.
Question 78 - Fact 1 : Dry air contains 20.95 % oxygen, 78.09 % nitrogen, 0.93 % argon, 0.039% carbon dioxide, and small amounts of other gases by volume. Fact 2 : Volume occupied is directly proportional to the number of moles for ideal gases at constant temperature and pressure. Fact 3 : 12.5 moles of pure oxygen is required to completely burn 1 mole of pure octane. Fact 4 : Air–fuel ratio (AFR) is the mass ratio of dry air to fuel present in a combustion process such as in an internal combustion engine or industrial furnace. Fact 5 : Molecular weight of oxygen gas is 31.998 g / mole and molecular weight of nitrogen gas is 28.014 g / mole. (a) Find the molar ratio of nitrogen and oxygen, or (moles of nitrogen) / (moles of oxygen) in dry air, by assuming ideal features of nitrogen and oxygen gases. (b) How many moles of nitrogen are available if dry air is used to completely burn the 1 mole pure octane? (c) Find the mass of fuel of 1 mole of octane with molecular weight of 114.232 g / mole. (d) Find the mass of dry air with 12.5 moles of pure oxygen by assuming only oxygen and nitrogen gases exist in the air. (e) Find the air-fuel ratio (AFR) when octane is used as fuel. (f) Find the fuel-air ratio (FAR) when octane is used as fuel.
What are some good tank mixing rules of thumb?
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)