How much water is lost through a commercial cooling tower system with a throughput of about 600 gpm?
No Answer is Posted For this Question
Be the First to Post Answer
PROCESS DESIGN - EXAMPLE 21.1 : According to rules of thumb in chemical process design, consider the use of an expander for reducing the pressure of a gas when more than 20 horsepowers can be recovered. The theoretical adiabatic horsepower (THp) for expanding a gas could be estimated from the equation : THp = Q [ Ti / (8130a) ] [ 1 - (Po / Pi) ^ a ] where 3 ^ 3 is 3 power 3 or 27, Q is volumetric flowrate in standard cubic feet per minute, Ti is inlet temperature in degree Rankine, a = (k - 1) / k where k = Cp / Cv, Po and Pi are reference and systemic pressures respectively. (a) Assume Cp / Cv = 1.4, Po = 14.7 psia, (temperature in degree Rankine) = [ (temperature in degree Celsius) + 273.15 ] (9 / 5), nitrogen gas at Pi = 90 psia and 25 degree Celsius flowing at Q = 230 standard cubic feet per minute is to be vented to the atmosphere. According to rules of thumb, should an expander or a valve be used? (b) Find the outlet temperature To by using the equation To = Ti (Po / Pi) ^ a.
THERMODYNAMIC - EXAMPLE 10.2 : A cylinder with a movable piston contains 0.1 mole of a monoatomic ideal gas. The piston moves through state a, b and c. The heat Q, changes from state c to a is + 685 J. The work W, changes from state c to a is - 120 J. The work, W performed from state a to b then to c is 75 J. By using the first law of thermodynamic, U = Q + W where U is the internal energy : (a) Determine the change in internal energy between states a and c. (b) Is heat added or removed from the gas when the gas is taken along the path abc? (c) Calculate the heat added or removed when the gas is taken along the path abc?
How to size the cooling tower sump / basin for any given circulation rate? What is the guideline?
I want to need previous placement questions of Jindal
1 Answers Jindal, Jindal Steel and Power,
HOw to derive reynolds equation?
why we messure differential pressure in pascle,mmhg,mmwc like different units in different companys?
can anyone send me the written test paper of Indian oil corporation ltd. My email id is pratuljakhmola@yahoo.com
QUANTUM CHEMISTRY AND CHEMICAL ENGINEERING - EXAMPLE 31.8 : (a) Acceptable wavefunction in quantum mechanics in the range of : negative infinity < x < positive infinity, vanishes at least at one boundary. Which of the following is the wavefunction or are the wavefunctions of acceptable theory : P = x, P = | x |, P = sin x, P = exp (-x), P = exp (-| x |)? State the reason. (b) Let linear momentum operator P = -ih d / dz. The wavefunction is S = exp (-ikz) where i x i = -1, k and h are constants. Find the linear momentum of such wavefunction by using the term P x S.
what is difference between precipitation and crystalisation
what is the difference between distillation column and distillation tower?
ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.10 : Let D be the random outcome of rolling a dice once. A new dice has values of D* = D - 3.5. There is a total of n rolls of a dice. (a) Find the variance for D* by using the formula 6 V = [ D* (D = 1) ] [ D* (D = 1) ] + [ D* (D = 2) ] [ D* (D = 2) ] + [ D* (D = 3) ] [ D* (D = 3) ] + [ D* (D = 4) ] [ D* (D = 4) ] + [ D* (D = 5) ] [ D* (D = 5) ] + [ D* (D = 6) ] [ D* (D = 6) ]. (b) Calculate the standard deviation of D* as a square root of V. (c) Another new dice has values of D** = kD*. (i) Find the value of k so that D** has a standard deviation of 1. (ii) Find the values of D** for each outcome of D = 1, 2, 3, 4, 5 and 6, when the standard deviation is 1. (iii) Given that the average score of a dice is 3.5, find the equivalent, new and improved model of a dice, Sn in term of n and D**. (iv) Find the expected value of D** as the average of D**.
Question 43 - In a non-dilute absorber, the inlet gas stream consists of 8 mol % carbon dioxide in nitrogen. By contact with room temperature water at atmospheric pressure, 65 % of the carbon dioxide from a gas stream has been removed. (a) Find the mole ratio of carbon dioxide and nitrogen gases at inlet and outlet gas streams. (b) The Henry’s Law provides y = 1640 x for carbon dioxide in water. Find the mole ratio when x = 0.0000427. Mole ratio is y / (1 - y) for y.
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)