ENGINEERING NUMERICAL METHODS - EXAMPLE 19.3 : There are 2 simultaneous equations : (A1) x + (B1) y = D1 and (A2) x + (B2) y = D2. (a) By using Excel program, find the values of x and y when A1 = 80, A2 = 150, B1 = 52, B2 = 100, D1 = 3.5 and D2 = 2.3. (b) Write the expression of Excel in the form of =MMULT(MINVERSE(W:X),Y:Z) in order to get the values of x and y. W, X, Y and Z may be A1, A2, B1, B2, D1 and D2.
ENGINEERING NUMERICAL METHODS - ANSWER 19.3 : (a) Excel program will produce the answers of x = 0.025, y = 0.01. (b) =MMULT(MINVERSE(A1:B2),D1:D2). The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.
| Is This Answer Correct ? | 0 Yes | 0 No |
What is Draft? It releavent to furnace.
how to convert Nm3/hr to Kg/hr for air, @ 10.4 kg/cm2.g dischare pressure, does density doesn't affect on calculation?
DIFFERENTIAL EQUATIONS - EXAMPLE 20.1 : By using Excel program either on laptop or desktop PC, solve the differential equation dy / dx = -2y + x + 4 with h = 0.005, initial values : x = 0, y = 1. The 4th order Runge-Kutta method provides : y(N + 1) = y(N) + (1/6) (k1 + 2k2 +2k3 + k4), k1 = h [ -2y(N) + x(N) + 4 ], k2 = h { -2 [ y(N) + k1 / 2 ] + x(N) + h / 2 + 4 }, k3 = h { -2 [ y(N) + k2 / 2 ] + x(N) + h / 2 + 4 }, k4 = h { -2 [ y(N) + k3 ] + x(N) + h + 4 }. What is the value of y at x = 0.5?
Question 84 - In Mendelian genetics, yellow (Y) is dominant to green (y) and round (R) is dominant to wrinkled (r). (a) What is the probability P of Rr x Rr producing wrinkled seeds? (b) What is the probability P of Yy x yy producing green seeds? (c) What is the probability that RRYy x RrYy would produce RrYy?
why we messure differential pressure in pascle,mmhg,mmwc like different units in different companys?
Explain the procedure to estimate the friction factor involved in heat exchanger tubes?
what is the purpose of knockout drum in SRU?
Explain why is post-weld heat treatment (stress relieving) sometimes necessary for welded vessels?
What is minimum fluidization velocity?
DIFFERENTIAL EQUATIONS - EXAMPLE 20.2 : During the landing process of an airplane, the velocity is constant at v. (a) If the displacement of the plane is x at time t, find the differential equation that relates t, x and v. (b) The plane has 2 parts of wheels - the front and the back, separated by a distance L. The front part of the wheel touches the land first, that allows the straight body of the plane to form an angle T with the horizontal land. If the vertical distance between the back part of the wheel and the horizontal land is y, find the equation of y as a function of L and T. (c) Find the differential equation that relates dy as a function of dt, v and sin T. (d) Find the differential equation that consist of dy as a function of y, L, v and dt. (e) Find the equation of y as a function of v, L, t and C where C is a constant. (f) When t = 0, prove that y = exp C as the initial value of y.
UNIT OPERATION - EXAMPLE 9.2 : A distillation column separates 10000 kg / hr of a mixture containing equal mass of benzene and toluene. The product D recovered from the condenser at the top of the column contains 95 % benzene, and the bottom W from the column contains 96 % toluene. The vapor V entering the condenser from the top of the column is 8000 kg / hr. A portion of the product from the condenser is returned to the column as reflux R, and the rest is withdrawn as the final product D. Assume that V, R, and D are identical in composition since V is condensed completely. Find the ratio of the amount refluxed R to the product withdrawn D. Hint : Solve the simultaneous equations as follow in order to find the answer (R / D) : 10000 = D + W; 10000 (0.5) = D (0.95) + W (0.04); 8000 = R + D.
ENGINEERING MECHANIC - EXAMPLE 15.2 : A cantilever beam of length L = 3 m carries a uniformly distributed load (UDL) of W = 20 N / m throughout the length. Calculate the bending moment, BM of the beam near the fixed end. What is the shear force, SF at this point? Let SF = -WL, BM = -LWL/2.
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)