BIOCHEMICAL ENGINEERING INSTRUMENTATION - EXAMPLE 29.4 : The resolution of separation, Rs for chromatography is given by the formula Rs = (difference in retention time) / (average width at the base). In a chromatogram, 3 peaks a, b and c are found. Average widths W at the bases of the solutes are : Wa = 20 s, Wb = 40 s, Wc = 30 s. Resolutions of separation, Rs for solutes b and c in comparison to a are 2 and 4 respectively. The differences in retention times T for b and c in comparison to a are (Tb - Ta) and (Tc - Ta), Ta = Tc - Tb : (a) Form 2 equations involving Rs as a function of Wa, Wb, Wc, Ta, Tb and Tc. (b) Find the values of Ta, Tb and Tc.



BIOCHEMICAL ENGINEERING INSTRUMENTATION - EXAMPLE 29.4 : The resolution of separation, Rs for chroma..

Answer / kangchuentat

BIOCHEMICAL ENGINEERING INSTRUMENTATION - ANSWER 29.4 : Reference formula Rs = (difference in retention time) / (average width at the base) is used. (a) First equation : Rs = (Tb - Ta) / [ (Wa + Wb) / 2 ] = 2 (Tb - Ta) / (Wa + Wb). Second equation : Rs = (Tc - Ta) / [ (Wa + Wc) / 2 ] = 2 (Tc - Ta) / (Wa + Wc). (b) Substitute Ta = Tc - Tb, Wa = 20 s, Wb = 40 s and Wc = 30 s into first equation and second equation. First equation : Rs = 2 = 2 [ Tb - (Tc - Tb) ] / (20 + 40) = (2 Tb - Tc) / 30, 2 Tb - Tc = 60. Second equation : Rs = 4 = 2 [ Tc - (Tc - Tb) ] / (20 + 30) = Tb / 25, Tb = 100 s. Substitute Tb = 100 s into first equation gives 2 Tb - Tc = 2 x 100 - Tc = 200 - Tc = 60, then Tc = 200 - 60 = 140 s. Then Ta = Tc - Tb = 140 - 100 = 40 s. The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.

Is This Answer Correct ?    0 Yes 0 No

Post New Answer

More Chemical Engineering Interview Questions

What types of metals are typically removed via chemical precipitation?

0 Answers  


Question 65 – A differential equation is given as y” + 5y’ + 6y = 0, y(0) = 2 and y’(0) = 3. By using Laplace transform, an engineer has correctly produced the equation L {y} = (2s + 13) / [(s + 2)(s + 3)] = A / (s + 2) + B (s + 3). (a) Find the values of A and B. (b) The inversed Laplace transform of 1 / (s + a) is given by exp (-at) where a is a constant. If the statement : L {y} = 9 L { exp (-2t) } - 7 L { exp (-3t) } is correct, find the equation of y as a function of t as a solution to the differential equation stated in the beginning of this question. When L {d} = 9 L {b} - 7 L {c}, then d = 9b - 7c with b, c and d are unknowns.

1 Answers  


Question 109 - (a) Acceptable wavefunction in quantum mechanics in the range of : negative infinity < x < positive infinity, vanishes at least at one boundary. Which of the following is the wavefunction or are the wavefunctions of acceptable theory : P = x, P = | x |, P = sin x, P = exp (-x), P = exp (-| x |)? State the reason. (b) Let linear momentum operator P = -ih d / dz. The wavefunction is S = exp (-ikz) where i x i = -1, k and h are constants. Find the linear momentum of such wavefunction by using the term P x S.

1 Answers  


DIFFERENTIAL EQUATIONS - EXAMPLE 20.3 : A differential equation is given as y” + 5y’ + 6y = 0, y(0) = 2 and y’(0) = 3. By using Laplace transform, an engineer has correctly produced the equation L {y} = (2s + 13) / [(s + 2)(s + 3)] = A / (s + 2) + B (s + 3). (a) Find the values of A and B. (b) The inversed Laplace transform of 1 / (s + a) is given by exp (-at) where a is a constant. If the statement : L {y} = 9 L { exp (-2t) } - 7 L { exp (-3t) } is correct, find the equation of y as a function of t as a solution to the differential equation stated in the beginning of this question. When L {d} = 9 L {b} - 7 L {c}, then d = 9b - 7c with b, c and d are unknowns.

1 Answers  


CHEMICAL MATERIAL BALANCE - EXAMPLE 2.3 : A 1.5 weight % aqueous salt solution is concentrated to 4 weight % in a single-effect evaporator. The feed rate to the evaporator is F = 7500 kg / h and the feed is at 85 degree Celsius. The evaporator operates at 1 bar. By assuming that only pure solvent of water exists in the form of vapor from the feed, calculate the flow rate of such vapor V.

1 Answers  






Chemical Engineering Material Balance - Three hundred gallons of a mixture containing 75.0 wt % ethanol and 25 wt % water (mixture specific gravity = 0.877) and a quantity of a 40.0 wt % ethanol - 60 wt % water mixture (specific gravity = 0.952) are blended to produce a mixture containing 60.0 wt % ethanol. The specific gravity of a substance is the ratio of density of a substance compared to the density of water. The symbol of weight percent is wt %. (a) Estimate the specific gravity of the 60 % mixture by assuming that y = mx c where y is wt % ethanol, x is mixture specific gravity. Values for m and c are constants. (b) Determine the required volume of the 40 % mixture.

1 Answers  


What does the catalystic converter on an automobile do?

3 Answers  


A 1.5 weight % aqueous salt solution is concentrated to 4 weight % in a single-effect evaporator. The feed rate to the evaporator is F = 7500 kg / h and the feed is at 85 degree Celsius. The evaporator operates at 1 bar. By assuming that only pure solvent of water exists in the form of vapor from the feed, calculate the flow rate of such vapor V.

1 Answers  


Question 8 - A local utility burns coal having the following composition on a dry basis : Carbon (C) 83.05 %, hydrogen (H) 4.45 %, oxygen (O) 3.36 %, nitrogen (N) 1.08 %, sulfur (S) 0.7 % and ash 7.36 %. Calculate the ash free composition of the coal with reference to C, H, O, N and S.

1 Answers  


Hi, Please give me chemical engineering paper for IOCL exam for entire written exam, GD and personel interview model questions to my email id. (chemistnathan@rediffmail.com) Rgds, Ragu

0 Answers   HAL, IOCL,


Explain the factors involved in designing kettle type reboiler?

0 Answers  


Cooling water line sizing ?

0 Answers   Deepak Fertilisers,


Categories
  • Civil Engineering Interview Questions Civil Engineering (5085)
  • Mechanical Engineering Interview Questions Mechanical Engineering (4451)
  • Electrical Engineering Interview Questions Electrical Engineering (16632)
  • Electronics Communications Interview Questions Electronics Communications (3918)
  • Chemical Engineering Interview Questions Chemical Engineering (1095)
  • Aeronautical Engineering Interview Questions Aeronautical Engineering (239)
  • Bio Engineering Interview Questions Bio Engineering (96)
  • Metallurgy Interview Questions Metallurgy (361)
  • Industrial Engineering Interview Questions Industrial Engineering (259)
  • Instrumentation Interview Questions Instrumentation (3014)
  • Automobile Engineering Interview Questions Automobile Engineering (332)
  • Mechatronics Engineering Interview Questions Mechatronics Engineering (97)
  • Marine Engineering Interview Questions Marine Engineering (124)
  • Power Plant Engineering Interview Questions Power Plant Engineering (172)
  • Textile Engineering Interview Questions Textile Engineering (575)
  • Production Engineering Interview Questions Production Engineering (25)
  • Satellite Systems Engineering Interview Questions Satellite Systems Engineering (106)
  • Engineering AllOther Interview Questions Engineering AllOther (1379)