PROCESS DESIGN - EXAMPLE 21.1 : According to rules of thumb in chemical process design, consider the use of an expander for reducing the pressure of a gas when more than 20 horsepowers can be recovered. The theoretical adiabatic horsepower (THp) for expanding a gas could be estimated from the equation : THp = Q [ Ti / (8130a) ] [ 1 - (Po / Pi) ^ a ] where 3 ^ 3 is 3 power 3 or 27, Q is volumetric flowrate in standard cubic feet per minute, Ti is inlet temperature in degree Rankine, a = (k - 1) / k where k = Cp / Cv, Po and Pi are reference and systemic pressures respectively. (a) Assume Cp / Cv = 1.4, Po = 14.7 psia, (temperature in degree Rankine) = [ (temperature in degree Celsius) + 273.15 ] (9 / 5), nitrogen gas at Pi = 90 psia and 25 degree Celsius flowing at Q = 230 standard cubic feet per minute is to be vented to the atmosphere. According to rules of thumb, should an expander or a valve be used? (b) Find the outlet temperature To by using the equation To = Ti (Po / Pi) ^ a.
PROCESS DESIGN - ANSWER 21.1 : (a) a = (k - 1) / k = (1.4 - 1) / 1.4 = 0.286. Ti = 25 degree Celsius to degree Rankine = (25 + 273.15) (9 / 5) = 536.67 degree Rankine. THp = Q [ Ti / (8130a) ] [ 1 - (Po / Pi) ^ a ] = 230 [ 536.67 / (8130 x 0.286) ] [ 1 - (14.7 / 90) ^ 0.286 ] = 21.469 horsepowers which is more than 20 horsepowers for expander to be used. (b) To = 536.67 (14.7 / 90) ^ 0.286 = 319.629 degree Rankine. The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.
| Is This Answer Correct ? | 0 Yes | 0 No |
Explain the different ways in which solids can be blended?
I am pg student of chemical engg. I am intrested Heat Transfer Subject . I want information about advance heat transfer related PG PROJECT
what is extractive distillaion
MASS TRANSFER - EXAMPLE 4.3 : According to Adolf Eugen Fick (1829 - 1901) : rate of diffusion v increases with less wall thickness t, increased area A and decreased molecular weight of a fluid M. The diffusion constant D decreased with increasing M. (a) By assuming v, t, dP, A, M and D changes proportionally of each other, find the equation of v as a function of t, dP, A and D. (b) The ratio of self diffusion constant D, at T = 273 K and P = 0.1 MPa, for gases B and C are 1.604 : 0.155. If only 2 gases exist in such a system : hydrogen and nitrogen, find the type of gas for B and C with reference to their molecular weights M. (c) By using the equation of kinetic energy 0.5 MV = constant where V = square of v, find the ratio of V for B and V for C, or V(B) / V(C), as a function of M(B) and M(C), where M(B) is molecular weight of B and M(C) the molecular weight of C : Graham's Law of Diffusion.
which thing is responsible for making petroleum?
Explain global warming from a common man's and an engineer's perspective?
What are some good strategies for curing tube vibration in shell and tube exchangers?
How is waste heat boilers categorized?
wha is Adsorption column chromatography?
i want sample inteview question of chemical engg for BARC
ELECTRICAL TECHNOLOGY - EXAMPLE 16.2 : In a selection of suitable heating equipment for drying of crystals of biochemical, the one of the lowest current consumption will be chosen for safety consideration. Selection is available : (A) 120 V microwave oven 1800 W. (B) 240 V conventional oven 11000 W. Which one should be chosen and why?
Question 50 - An aqueous solution with 2.5 g of a protein dissolved in 600 cubic centimeters of a solution at 20 degree Celsius was placed in a container that has a water-permeable membrane. Water permeated through the membrane until the h - level of the solution was 0.9 cm above the pure water. (a) Calculate the absolute temperature of the solution, T in Kelvin, where T (Kelvin) = T (degree Celsius) + 273.15. (b) Calculate the osmotic pressure, P of the solution by using the formula P = hrg where h is level of the solution, r is density of water with 1000 kg per cubic meter, g = 9.81 N / kg as gravitational acceleration. (c) Calculate the concentration of the protein solution, C in kg / cubic meter. (d) Calculate the molecular weight of the protein, (MW) = CRT / P where R = 8.314 Pa cubic meter / (mol K) as ideal gas constant.
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)