CHEMICAL MATERIAL BALANCE – EXAMPLE 2.6 : According to Raoult's law for ideal liquid, x (PSAT) = yP where x is mole fraction of component in liquid, y is mole fraction of component in vapor, P is overall pressure and PSAT is saturation pressure. A liquid with 60 mole % component 1 and 40 mole % component 2 is flashed to 1210 kPa. The saturation pressure for component 1 is ln (PSAT) = 15 - 3010 / (T + 250) and for component 2 is ln (PSAT) = 14 - 2700 / (T + 205) where PSAT is in kPa and T is in degree Celsius. By assuming the liquid is ideal, calculate (a) the fraction of the effluent that is liquid; (b) the compositions of the liquid and vapor phases. The outlet T is 150 degree Celsius.

CHEMICAL MATERIAL BALANCE – EXAMPLE 2.6 : According to Raoult's law for ideal liquid, x (..

CHEMICAL MATERIAL BALANCE – ANSWER 2.6 : (a) For component 1, ln (PSAT) = 15 - 3010 / (150 + 250) = 7.475, PSAT = 1763 kPa. For component 2, ln (PSAT) = 14 - 2700 / (150 + 205) = 6.394, PSAT = 598 kPa. Let x(1) PSAT(1) = y(1) P, x(2) PSAT(2) = y(2) P, then x(1) PSAT(1) + x(2) PSAT(2) = [ y(1) + y(2) ] P = P, x(1) (1763) + [ 01 - x(1) ] (598) = 1210, x(1) (1763 - 598) = 1210 - 598, x(1) = 0.525, x(2) = 1 - x(1) = 0.475. (b) y(1) = x(1) PSAT(1) / P = 0.525 (1763) / 1210 = 0.765, y(2) = 1 - y(1) = 0.235. Overall mass balance is assumed 1 mole for F = V + L where F is incoming mole, V is flashed vapor in mole and L is outgoing liquid in mole. For component 1, zF = xL + yV then 0.6(1) = 0.525 L + 0.765 (1 - L), then L = 0.6875, V = 1 - L = 0.3125. Let z to be 60 mole %. The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.

 Is This Answer Correct ? 0 Yes 0 No

More Chemical Engineering Interview Questions

Why is a vacuum breaker used on shell and tube heat exchangers that are utilizing steam as the heating utility?

How can we identify a poisoned food if we are not able to sense it?? . .,(naturally by colour ,smell etc. . .)

QUANTUM BIOLOGY - EXAMPLE 33.9 : (a) Let ^ be the symbol of power where 10 ^ 1 = 10, 10 ^ 2 = 100, 10 ^ 3 = 1000 etc. Total energy consumption of the brain is about 25 Watts, whereas a Blue Gene computer requires 1.5 Mega Watts. Blue Gene computer performs at 1 petaflop. In a human body, there are approximately 10 ^ 16 synapse operations per second i. e. at least 10 petaflops. Prove by calculations that a human brain is more energy efficient than a Blue Gene computer. (b) Quantum effects and quantum entanglement in the brain are identical to quantum gravity and string theory. If one is true, the other is true. What conclusion can be made if quantum effects in the brain and quantum gravity are true?

What type of pump may be appropriate for a liquid near saturation, a low flow rate, and very limited npsha?

which chemical reaction has the maximum evolution of heat?

What's -74C, dew point is better the -70C dew point In draying unit .

Define a barometric condenser?

if i added hypo before DM plant so i will affect my resins of anion or cation. if affect it so do prevent what kind of step should be taken to remove hypo before DM inlet?

DEAR SIR, IS IT ANY BARC TECHNICAL OR INTERVIEW QUESTION BOOK IN CHEMICAL ENGG LAST YEARS IN MARKET? ALSO GIVE THE PATTERN HOW TO PREPARE AND WHAT TYPE OF QUESTION THEY ASKED?

Should slurry pipes be sloped during horizontal runs?

QUANTUM COMPUTING - EXAMPLE 32.8 : In quantum computing, a quantum state is given by S = a | 00 > + b | 01 > + g | 10 > + d | 11 >. (a) Find S in term of | 0 > and | 1 > etc. (b) The probability of getting x is P(x). For S = 0.5 | 00 > + 0.5 | 01 > + 0.5 | 10 > + 0.5 | 11 >, find P(0) and P(1). Hint : P(00) + P(01) = P(0) = a x a + b x b, P(10) + P(11) = P(1) = g x g + d x d.

What is condensate lift?

Categories
• Civil Engineering (5085)
• Mechanical Engineering (4452)
• Electrical Engineering (16638)
• Electronics Communications (3918)
• Chemical Engineering (1095)
• Aeronautical Engineering (239)
• Bio Engineering (96)
• Metallurgy (361)
• Industrial Engineering (259)
• Instrumentation (3014)
• Automobile Engineering (332)
• Mechatronics Engineering (97)
• Marine Engineering (124)
• Power Plant Engineering (172)
• Textile Engineering (575)
• Production Engineering (25)
• Satellite Systems Engineering (106)
• Engineering AllOther (1379)