Golgappa.net | Golgappa.org | BagIndia.net | BodyIndia.Com | CabIndia.net | CarsBikes.net | CarsBikes.org | CashIndia.net | ConsumerIndia.net | CookingIndia.net | DataIndia.net | DealIndia.net | EmailIndia.net | FirstTablet.com | FirstTourist.com | ForsaleIndia.net | IndiaBody.Com | IndiaCab.net | IndiaCash.net | IndiaModel.net | KidForum.net | OfficeIndia.net | PaysIndia.com | RestaurantIndia.net | RestaurantsIndia.net | SaleForum.net | SellForum.net | SoldIndia.com | StarIndia.net | TomatoCab.com | TomatoCabs.com | TownIndia.com
Interested to Buy Any Domain ? << Click Here >> for more details...


Define viscosity?


No Answer is Posted For this Question
Be the First to Post Answer

Post New Answer

More Chemical Engineering Interview Questions

ENGINEERING MATHEMATICS - EXAMPLE 8.3 : Solve the first order differential equation : (Z + 1)(dy/dx) = xy in term of ln |y| = f(x). Z = (x)(x).

1 Answers  


what is the height between the reflux pump and condenser ?

4 Answers  


Question 40 - A stream with volumetric flow rate Q enters a cylindrical tank and a stream with volumetric flow rate q exits the tank. The fluid has a constant heat capacity and density. There is no temperature change or chemical reaction occurring in the tank. Develop a model for determining the height of the tank, h. Let V is the volume, A is the cross sectional area, r is the density, m is the mass, where V and A are for the tank, r and m are for the fluid. The rate of mass of fluid accumulation, dm / dt = (Q - q) r. Prove the model to be dh / dt = (Q - q) / A.

1 Answers  


Question 38 - The terminal velocity of a falling object, v is given by v = sqrt [ 4g (R - r) D / (3Cr) ] where sqrt is the square root of, g = 9.81, D = 0.000208, R = 1800, r = 994.6, m = 0.000893. The Reynold number, L is given by L = rD (v) / m. The C for various conditions are : C = 24 / L for L < 0.1; C = 24 (1 + 0.14 L^0.7) / L for 0.1 <= L <= 1000; C = 0.44 for 1000 < L <= 350000; C = 0.19 - 80000 / L for 350000 < L. Find the value of v for the situation above by trial and error, ^ is power, <= is less than or equal to.

1 Answers  


What is the process of Scrubber ?

3 Answers  


CHEMICAL FLUID MECHANIC - EXAMPLE 3.1 : Water flows through a pipe with circular cross sectional area at the rate of V / t = 80 L / s where V is the volume and t is time. Let Av = 80 L / s where A is cross sectional area and v is velocity of fluid. For point 1, the radius of the pipe is 16 cm. For point 2, the radius of the pipe is 8 cm. Find (a) the velocity at point 1; (b) the velocity at point 2; (c) the pressure at point 2 by using Bernoulli's equation where P + Rgy + 0.5 RV = constant. P is the pressure, R = density of fluid, V = square of fluid's velocity, g = gravitational constant of 9.81 N / kg and y = 2 m = difference of height at 2 points. The pressure of point 1 is 180 kPa.

1 Answers  


Question 45 - According to Raoult’s law for ideal liquid, x (PSAT) = yP where x is mole fraction of component in liquid, y is mole fraction of component in vapor, P is overall pressure and PSAT is saturation pressure. A liquid with 60 mole % component 1 and 40 mole % component 2 is flashed to 1210 kPa. The saturation pressure for component 1 is ln (PSAT) = 15 - 3010 / (T + 250) and for component 2 is ln (PSAT) = 14 - 2700 / (T + 205) where PSAT is in kPa and T is in degree Celsius. By assuming the liquid is ideal, calculate (a) the fraction of the effluent that is liquid; (b) the compositions of the liquid and vapor phases. The outlet T is 150 degree Celsius.

1 Answers  


Question 62 – The names of the flow streams could be represented by : H1 for first hot stream, H2 for second hot stream, C1 for first cold stream, C2 for second cold stream. Data of supply temperature Ts in degree Celsius : 150 for H1, 170 for H2, 30 for C1, 30 for C2. Data of target temperature Tt in degree Celsius : 50 for H1, 169 for H2, 150 for C1, 40 for C2. Data of heat capacity Cp in kW / degree Celsius : 3 for H1, 360 for H2, 3 for C1, 30 for C2. (a) Find the enthalpy changes, dH for all streams of flow H1, H2, C1 and C2 in the unit of kW. Take note of the formula dH = (Cp) (Tt - Ts). (b) Match the hot streams H1 and H2 with the suitable cold streams C1 and C2 to achieve the maximum energy efficiency.

1 Answers  


ENGINEERING ECONOMY - EXAMPLE 7.1 : In engineering economy, the future value of first year is FV = PV (1 + i). For second year it is FV = PV (1 + i) (1 + i). For third year it is FV = PV (1 + i) (1 + i)(1 + i) where FV = future value, PV = present value, i = interest rate per period, n = the number of compounding periods. By induction, what is the future value of $1000 for 5 years at the interest rate of 6 %?

1 Answers  


How 'saltation velocity' is used in designing pneumatic conveying systems?

0 Answers  


What is a Spool in terms of piping Industry?

2 Answers   Punj Lloyd Ltd,


hi i need cpcl written exam question papers if anybody pls help me

0 Answers  


Categories
  • Civil Engineering Interview Questions Civil Engineering (5086)
  • Mechanical Engineering Interview Questions Mechanical Engineering (4456)
  • Electrical Engineering Interview Questions Electrical Engineering (16639)
  • Electronics Communications Interview Questions Electronics Communications (3918)
  • Chemical Engineering Interview Questions Chemical Engineering (1095)
  • Aeronautical Engineering Interview Questions Aeronautical Engineering (239)
  • Bio Engineering Interview Questions Bio Engineering (96)
  • Metallurgy Interview Questions Metallurgy (361)
  • Industrial Engineering Interview Questions Industrial Engineering (259)
  • Instrumentation Interview Questions Instrumentation (3014)
  • Automobile Engineering Interview Questions Automobile Engineering (332)
  • Mechatronics Engineering Interview Questions Mechatronics Engineering (97)
  • Marine Engineering Interview Questions Marine Engineering (124)
  • Power Plant Engineering Interview Questions Power Plant Engineering (172)
  • Textile Engineering Interview Questions Textile Engineering (575)
  • Production Engineering Interview Questions Production Engineering (25)
  • Satellite Systems Engineering Interview Questions Satellite Systems Engineering (106)
  • Engineering AllOther Interview Questions Engineering AllOther (1379)