Difference between Synthetic foaming agents V/S Protien based foaming agent?
No Answer is Posted For this Question
Be the First to Post Answer
Question 88 - In the calculation of the growth of bacteria, colony forming unit (CFU) in serial dilution is used. In a laboratory, viable count assay is used to estimate CFU. Formula applied is CFU / mL = (number of colonies x dilution) / (amount plated, in unit mL). Acceptable plate count is either between 20 and 200 or between 30 and 300 according to 2 different references. A wastewater sample of 200 ml is added to and mixed with 1.8 L of sterile water. Another 200 ml of the mixture is added to and mixed with 1.8 L of sterile water. (a) Calculate the dilution of first mixture and the dilution of the second mixture. (b) 100 microlitres of wastewater samples from the first mixture and the second mixture are placed separately on 2 different alga plates. The first plate has 250 colonies and the second plate has 23 colonies. Calculate the average CFU / mL.
What is the method involved in analyzing powders for composition?
Is it ever advantageous to use shells in series even though it may not be necessary?
What is the iodine value of spent carbon?How iodine value is used to determine the power of carbon to adsorb?
What is the angle of repose?
Explain the advantages of using a ball mill over other conventional methods of crushing?
i want sample inteview question of chemical engg for BARC
In a furnace, 2 chemical reactions are happening – 1 mole of solid carbon reacts with 1 mole of oxygen gas to generate 1 mole of carbon dioxide gas; 1 mole of solid carbon reacts with 0.5 mole of oxygen gas to generate 1 mole of carbon monoxide gas. In a given process, 100 kmol of carbon is burned in a furnace. (a) Calculate the theoretical oxygen gas needed by assuming that all the carbon is burned completely to carbon dioxide gas. (b) Calculate the theoretical air needed by assuming that all the carbon is burned completely to carbon dioxide gas and there is only 21 % of oxygen gas. (c) Determine the amount of air required (in kmol) if 50 % excess oxygen gas must be satisfied for (a) and (b). (d) It has latter been found that 20 % of the carbon undergoes incomplete combustion resulting to carbon monoxide gas production. The rest of the carbon undergoes complete combustion. Calculate the total oxygen gas required stoichiometrically based on the actual process.
Can any one send me the sample test papers of IOCL entry exam to be held on 6th july 2008. Also plz send the interview questions that cud probably be asked........i wud be highly obliged if u can send a few test paers and other stuff @ inderjeetd@gmail.com.........Inderpreet
Question 100 - (a) Time evolution in Heisenberg picture, according to Ehrenfest theorem is m (d / dt) < r > = < p >, where m = mass, r = position, p = momentum of a particle. If v = velocity, prove that m < v > = < p >. (b) Lande g-factor is given by Gj = Gl [ J (J + 1) - S (S + 1) + L (L + 1) ] / [ 2J (J + 1) ] + Gs [ J (J + 1) + S (S + 1) - L (L + 1) ] / [ 2J (J + 1) ]. If Gl = 1 and under approximation of Gs = 2, prove by calculation that Gj = (3/2) + [ S (S + 1) - L (L + 1) ] / [ 2J (J + 1) ].
who is the first atomic scientist in india?
BIOPROCESS ENGINEERING - EXAMPLE 14.2 : An aqueous solution with 2.5 g of a protein dissolved in 600 cubic centimeters of a solution at 20 degree Celsius was placed in a container that has a water-permeable membrane. Water permeated through the membrane until the h - level of the solution was 0.9 cm above the pure water. (a) Calculate the absolute temperature of the solution, T in Kelvin, where T (Kelvin) = T (degree Celsius) + 273.15. (b) Calculate the osmotic pressure, P of the solution by using the formula P = hrg where h is level of the solution, r is density of water with 1000 kg per cubic meter, g = 9.81 N / kg as gravitational acceleration. (c) Calculate the concentration of the protein solution, C in kg / cubic meter. (d) Calculate the molecular weight of the protein, (MW) = CRT / P where R = 8.314 Pa cubic meter / (mol K) as ideal gas constant.
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)