What is % of piping & equipment cost for a chemical plant
having batch process?
No Answer is Posted For this Question
Be the First to Post Answer
Question 8 - A local utility burns coal having the following composition on a dry basis : Carbon (C) 83.05 %, hydrogen (H) 4.45 %, oxygen (O) 3.36 %, nitrogen (N) 1.08 %, sulfur (S) 0.7 % and ash 7.36 %. Calculate the ash free composition of the coal with reference to C, H, O, N and S.
PROCESS CONTROL - EXAMPLE 6.1 : In a Laplace Transform Table, the Laplace transfer function of f(t) is F(s). When d(t) = f(t) then 1 = F(s). When x(t) = f(t) then X(s) = F(s). If d(t) is the impulse of a spring when d(t) = kx(t), then derive the equation for the impulse of a spring as X(s) in term of k. Next question : A controller has a transfer function a and the other controller has a transfer function b. The overall transfer function of both controllers is ab. What is the transfer function overall when both controllers have similar transfer function 1 / (Cs + k)?
Hi, I want to validate an analytical procedure of a specified impurity, but this impurity is unavailable for me. can I use the API instead of impurity in the linearity test? in Which reference can I find such information?
ENGINEERING MATERIAL - EXAMPLE 12.2 : At 150 degree Celsius, a mixture of 40 wt % Sn and 60 wt % Pb present, forming phases of alpha and beta. Chemical composition of Sn at each phase : CO (overall) : 40 %, CA (alpha) : 11 %, CB (beta) : 99 %. (a) State 2 reasons for the existences of alpha and beta phases for the mixture of Sn - Pb at 150 degree Celsius. (b) By using Lever Rule, calculate the weight fraction of each phase for alpha, WA = Q / (P + Q) and beta, WB = P / (P + Q) where Q = CB - CO and P = CO - CA.
In a triple effect evaporator, the heat transfer for an evaporator is calculated as q = UA (TI – TF) where TI is the initial temperature, TF is the final temperature; U and A are constants. Given that heat transfer for the first evaporator : q(1) = UA (TI – TB); second evaporator : q(2) = UA (TB – TC); third evaporator : q(3) = UA (TC – TF) where q(x) is the heat transfer function, TB is the temperature of second inlet and TC is the temperature of third inlet, prove that the overall heat transfer Q = q(1) q(2) q(3) = UA (TI – TF).
CHEMICAL ENERGY BALANCE - EXAMPLE 11.2 : Calculate the cooling duty, H required to condense and cool acetone from 100 degree Celsius to 25 degree Celsius at atmospheric pressure. The heat of vaporization for acetone at its normal boiling point is 30.2 kJ / mol. The boiling point of acetone at atmospheric pressure is 56 degree Celsius. The flowrate of acetone through the condenser is 100 mol / s = N. Value of sensible heat needed to increase the temperature of acetone in liquid form from 25 to 56 degree Celsius is 4.06 kJ / mol. Value of sensible heat needed to increase the temperature of acetone in vapor form from 56 to 100 degree Celsius is 3.82 kJ / mol. Unit of H is kJ / s.
Three solid objects of the same material and of equal mass – a sphere, a cylinder (length = diameter) and a cube – are at 5000C initially. These are dropped in a quenching bath containing a large volume of cooling oil each attaining the bath temperature eventually. The time required for 90% change of temperature is smallest for a) cube b) cylinder c) sphere d) equal for all the three whyyyyyyy???????
oil field interview question
How are plate heat exchangers used in an ammonia refrigeration system?
What is a quick way to calculate frictional pressure drops in carbon steel pipe?
What is a good method of steam tracing large vessels?
What is the difference between cfm (cubic feet per minute) and scfm (standard cubic feet per minute)?
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)