What is a "saltation velocity"?


No Answer is Posted For this Question
Be the First to Post Answer

Post New Answer

More Chemical Engineering Interview Questions

If I do M tech in chemical engineering from iit kgp,iit delhi or iit kanpur...what are the job opportunities,and what salary they offered.plz tell me...i had 156 all india rank..i did not take admission ..but this year i m thinking to take admission...

2 Answers  


what are the reaction between sodium meta bi sulphate and chlorine?

1 Answers   Dalkia,


i am giving BARC Trainee exam in chemical. Can anyone tell the syllabus and question paper pattern for OCES for BARC trainee?

1 Answers  


Is it advisable to cool a fin fan by spraying demineralized water on it?

0 Answers  


what is zeroth law ?

6 Answers   ISRO,






What are some common problems associated with dilute phase pneumatic conveying?

0 Answers  


POLYMER ENGINEERING - QUESTION 24.1 : The molecular weights M in kg / mol of 3 different monomers a, b and c in a polymer are Ma = 14, Mb = 16 and Mc = 18. The fraction of polymer chain X of 3 different monomers a, b and c in a polymer are Xa = 0.5, Xb = 0.3 and Xc = 0.2. (i) Calculate number average molecular weight by using the formula Ma Xa + Mb Xb + Mc Xc. (ii) Calculate weight average molecular weight by using the formula (Ma Xa Ma + Mb Xb Mb + Mc Xc Mc) / (Ma Xa + Mb Xb + Mc Xc). (iii) Calculate the polydispersity by using the answer in (ii) divided by answer in (i). (iv) If the molecular weight of repeat unit is 12, calculate the degree of polymerization by using the formula (Ma Xa + Mb Xb + Mc Xc) / (molecular weight of repeat unit).

1 Answers  


BIOCHEMICAL ENGINEERING INSTRUMENTATION - EXAMPLE 29.4 : The resolution of separation, Rs for chromatography is given by the formula Rs = (difference in retention time) / (average width at the base). In a chromatogram, 3 peaks a, b and c are found. Average widths W at the bases of the solutes are : Wa = 20 s, Wb = 40 s, Wc = 30 s. Resolutions of separation, Rs for solutes b and c in comparison to a are 2 and 4 respectively. The differences in retention times T for b and c in comparison to a are (Tb - Ta) and (Tc - Ta), Ta = Tc - Tb : (a) Form 2 equations involving Rs as a function of Wa, Wb, Wc, Ta, Tb and Tc. (b) Find the values of Ta, Tb and Tc.

1 Answers  


Question 78 - Fact 1 : Dry air contains 20.95 % oxygen, 78.09 % nitrogen, 0.93 % argon, 0.039% carbon dioxide, and small amounts of other gases by volume. Fact 2 : Volume occupied is directly proportional to the number of moles for ideal gases at constant temperature and pressure. Fact 3 : 12.5 moles of pure oxygen is required to completely burn 1 mole of pure octane. Fact 4 : Air–fuel ratio (AFR) is the mass ratio of dry air to fuel present in a combustion process such as in an internal combustion engine or industrial furnace. Fact 5 : Molecular weight of oxygen gas is 31.998 g / mole and molecular weight of nitrogen gas is 28.014 g / mole. (a) Find the molar ratio of nitrogen and oxygen, or (moles of nitrogen) / (moles of oxygen) in dry air, by assuming ideal features of nitrogen and oxygen gases. (b) How many moles of nitrogen are available if dry air is used to completely burn the 1 mole pure octane? (c) Find the mass of fuel of 1 mole of octane with molecular weight of 114.232 g / mole. (d) Find the mass of dry air with 12.5 moles of pure oxygen by assuming only oxygen and nitrogen gases exist in the air. (e) Find the air-fuel ratio (AFR) when octane is used as fuel. (f) Find the fuel-air ratio (FAR) when octane is used as fuel.

1 Answers  


Question 81 - (a) In natural gas pipe sizing, the length of the pipe from the gas source metre to the farthest appliances is 60 feet. The maximum capacities for typical metallic pipes of 60 feet in length are : 66 cubic feet per hour for pipe size of 0.5 inches; 138 cubic feet per hour for pipe size of 0.75 inches; 260 cubic feet per hour for pipe size of 1 inch. By using the longest run method : (i) Find the best pipe size needed for the capacity of 75 cubic feet per hour. (ii) Estimate the suitable range of capacities for the pipe size of 1 inch. (b) The maximum capacities for typical metallic pipes of 50 feet in length are : 73 cubic feet per hour for pipe size of 0.5 inches; 151 cubic feet per hour for pipe size of 0.75 inches; 285 cubic feet per hour for pipe size of 1 inch. By using the branch method find the best pipe size needed for the capacity of 75 cubic feet per hour when the length of the pipe from the gas source metre to the appliance is 52 feet.

1 Answers  


At what temperature is glass fused to steel in the making of glass-lined equipment?

0 Answers  


Question 27 – By using Excel or other easiest programming package, explain how I, the integral of sin x dx from 0 to 3.142 could be approximated using random number. Find the exact value of I.

1 Answers  


Categories
  • Civil Engineering Interview Questions Civil Engineering (5085)
  • Mechanical Engineering Interview Questions Mechanical Engineering (4452)
  • Electrical Engineering Interview Questions Electrical Engineering (16632)
  • Electronics Communications Interview Questions Electronics Communications (3918)
  • Chemical Engineering Interview Questions Chemical Engineering (1095)
  • Aeronautical Engineering Interview Questions Aeronautical Engineering (239)
  • Bio Engineering Interview Questions Bio Engineering (96)
  • Metallurgy Interview Questions Metallurgy (361)
  • Industrial Engineering Interview Questions Industrial Engineering (259)
  • Instrumentation Interview Questions Instrumentation (3014)
  • Automobile Engineering Interview Questions Automobile Engineering (332)
  • Mechatronics Engineering Interview Questions Mechatronics Engineering (97)
  • Marine Engineering Interview Questions Marine Engineering (124)
  • Power Plant Engineering Interview Questions Power Plant Engineering (172)
  • Textile Engineering Interview Questions Textile Engineering (575)
  • Production Engineering Interview Questions Production Engineering (25)
  • Satellite Systems Engineering Interview Questions Satellite Systems Engineering (106)
  • Engineering AllOther Interview Questions Engineering AllOther (1379)