ENGINEERING PHYSICS - EXAMPLE 30.4 : (a) Time evolution in Heisenberg picture, according to Ehrenfest theorem is m (d / dt) < r > = < p >, where m = mass, r = position, p = momentum of a particle. If v = velocity, prove that m < v > = < p >. (b) Lande g-factor is given by Gj = Gl [ J (J + 1) - S (S + 1) + L (L + 1) ] / [ 2J (J + 1) ] + Gs [ J (J + 1) + S (S + 1) - L (L + 1) ] / [ 2J (J + 1) ]. If Gl = 1 and under approximation of Gs = 2, prove by calculation that Gj = (3/2) + [ S (S + 1) - L (L + 1) ] / [ 2J (J + 1) ].
ENGINEERING PHYSICS - ANSWER 30.4 : (a) Let (d / dt) < r > = < v >. Substitute it into m (d / dt) < r > = < p > so that m < v > = < p >, proven by momentum = mass x velocity. (b) Gj = Gl [ J (J + 1) - S (S + 1) + L (L + 1) ] / [ 2J (J + 1) ] + Gs [ J (J + 1) + S (S + 1) - L (L + 1) ] / [ 2J (J + 1) ]. When Gl = 1 and Gs = 2, Gj = [ J (J + 1) - S (S + 1) + L (L + 1) ] / [ 2J (J + 1) ] + 2 [ J (J + 1) + S (S + 1) - L (L + 1) ] / [ 2J (J + 1) ] = [ J (J + 1) + 2J (J + 1) ] / [ 2J (J + 1) ] + [ 2S (S + 1) - 2L (L + 1) - S (S + 1) + L (L + 1) ] / [ 2J (J + 1) ] = [ 3J (J + 1) ] / [ 2J (J + 1) ] + [ S (S + 1) - L (L + 1) ] / [ 2J (J + 1) ] = (3/2) + [ S (S + 1) - L (L + 1) ] / [ 2J (J + 1) ] (proven). The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.
| Is This Answer Correct ? | 0 Yes | 0 No |
How can you determine the proper pipe thickness for a slurry line?
what is designing step of heat exchanger
Explain the method of determining maximum differential pressure during hydro testing of shell and tube heat exchangers?
Is there any way to slow coke formation in ethylene furnaces?
What is the total power requirement for Kerala
Explain the common failure mechanism for above ground atmospheric storage tanks?
How can I evaluate the thermal relief requirements for double block-in of 98% sulfuric acid?
ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.35 : A voluntary accountant is performing Du Pont Analysis for a charitable engineering organization. References for 3-step Du Pont formula are : (ROE) = (Net Income $) / (Equity $), where ROE is Return On Equity. (ROS) = (Net Income $) / (Sales $), where ROS is Return On Sales. (Asset Turnover) = (Sales $) / (Assets $). (Leverage) = (Assets $) / (Equity $). From the balance sheet and income statement, the company has Assets of $3753.19 this year and $3216.86 last year. Sales for this year is $2292.34. Let ROE = 0.37 and ROS = 0.21. (a) Calculate the Asset Turnover of the organization. (b) Find the value of the organizational Leverage. (c) Calculate the Net Income $ of the organization.
What are the different types of equipments for the conveyance of solids?
PROCESS DESIGN - EXAMPLE 21.3 : According to a heuristic of chemical engineering plant design, assume a pressure difference dP = 4 psi for each 10-ft rise in elevation. A pump is needed to pump liquid from a storage tank at a lower elevation to a heating tank at a higher elevation with the elevation difference of 60 ft. (a) Find the pressure loss due to such elevation. (b) If the required minimum inlet pressure to the heating tank is 9 psi, with 1 control valve is installed between pump and heating tank, what is the dP minimum required for the control valve and the entrance to the heating tank when the heuristic mentions that at least 10 psi is required for the control valve? (c) The pressure at the inlet of the pump is 8 psi and the flowrate of the liquid produces pressure head of 50 psi. What is the total pressure produced by the pump? (d) Assume a pipeline dP of 2 psi / 100 ft for liquid flow in a pipe according to heuristic, what is the approximate maximum length of the pipe in ft that can be installed between the pump and the heating tank?
UNIT OPERATION - EXAMPLE 9.1 : Which of the sequence below represent a feasible flows of ethanol processing plants using cellulose as starting material? A. raw material -> heat exchanger -> distillation column -> reactor. B. reactor -> distillation column -> raw material -> heat exchanger. C. heat exchanger -> raw material -> distillation column -> reactor. D. raw material -> heat exchanger -> reactor -> distillation column. E. distillation column -> raw material -> reactor -> heat exchanger.
What is the chemical name of Silica gel?
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)