MASS TRANSFER - EXAMPLE 4.3 : According to Adolf Eugen Fick (1829 - 1901) : rate of diffusion v increases with less wall thickness t, increased area A and decreased molecular weight of a fluid M. The diffusion constant D decreased with increasing M. (a) By assuming v, t, dP, A, M and D changes proportionally of each other, find the equation of v as a function of t, dP, A and D. (b) The ratio of self diffusion constant D, at T = 273 K and P = 0.1 MPa, for gases B and C are 1.604 : 0.155. If only 2 gases exist in such a system : hydrogen and nitrogen, find the type of gas for B and C with reference to their molecular weights M. (c) By using the equation of kinetic energy 0.5 MV = constant where V = square of v, find the ratio of V for B and V for C, or V(B) / V(C), as a function of M(B) and M(C), where M(B) is molecular weight of B and M(C) the molecular weight of C : Graham's Law of Diffusion.
MASS TRANSFER - ANSWER 4.3 : (a) v = (dP) AD / t. (b) Hydrogen has least M among all gases - general knowledge - highest D. Then B = hydrogen and C = nitrogen. (c) Let 0.5 M(B) V(B) = 0.5 M(C) V(C), then V(B) / V(C) = M(C) / M(B). The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.
Is This Answer Correct ? | 0 Yes | 0 No |
ENGINEERING PHYSICS - EXAMPLE 30.1 : Two viruses a and b with masses of Ma and Mb are moving at velocities of Va and Vb respectively, facing towards each other and collide. After collision both masses of Ma and Mb disappear. (a) Find the total momentum available for both a and b. Hint : momentum = mass x velocity = M x V. (b) Guess the total energy E generated from the disappearance of a and b. Let c to be the velocity of light. Hint : E is equal to M c square.
What are the merits of using a falling film evaporator?
Question 82 - (a) The Hyperion sewage plant in Los Angeles burns 8 million cubic feet of natural gas per day to generate power in United States of America. If 1 metre = 3.28084 feet, then how many cubic metres of such gas is burnt per hour? (b) A reservoir of natural gas produces 50 mole % methane and 50 mole % ethane. At zero degree Celsius and one atmosphere, the density of methane gas is 0.716 g / L and the density of ethane gas is 1.3562 mg / (cubic cm). The molar mass of methane is 16.04 g / mol and molar mass of ethane is 30.07 g / mol. (i) Find the mass % of methane and ethane in the natural gas. (ii) Find the average density of the natural gas mixture in the reservoir at zero degree Celsius and one atmosphere, by assuming that the gases are ideal where final volume of the gas mixture is the sum of volume of the individual gases at constant temperature and pressure. (iii) Find the average density of the natural gas mixture in the reservoir at zero degree Celsius and one atmosphere, by assuming that the final mass of the gas mixture is the sum of mass of the individual gases. Assume the gases are ideal where mole % = volume % at constant pressure and temperature.
sir i am appearing in railway exam of section engineer and my branch is chemical engineering i want previous question paper of section engineer of chemical branch please tell me as soon as possible my email id is surendrasaroj18@gmail.com THANKYOU
How much steam required for 1MW power production form 30 bar G super heated steam(350 C), outlet of turbine 4.5 bar
ENGINEERING PHYSICS - EXAMPLE 30.5 : (a) Let | A > = (Aa Ab Ac), | B > = (Ba Bb Bc), | C > = (Ca Cb Cc). Find | A > + | C > - | B > in term of Aa, Ab, Ac, Ba, Bb, Bc, Ca, Cb and Cc. (b) Let d | E > = d (Ea Eb Ec) = (d Ea d Eb d Ec). If | E > = (6 7 8), find the value of 10 | E >.
Mention some of the specialized grinding and crushing methods.
Question 59 – There are 5 simultaneous equations with 5 unknowns as follow : 16 V – 4 X – Z = 36, 4 X – 4 W – Y + Z = 3, 8 V + 4 W – X + Y = 10, X – W = 1, V + W = 0. Find the values of V, W, X, Y and Z accurately within 15 minutes. State the computer program that you use to get the answers.
Please describe tar, asphalt and bitumine
what is the purpose of capacitor? and capacitor load means what? how does it connect?
Explain the largest application for surfactants?
BIOCHEMICAL ENGINEERING INSTRUMENTATION - EXAMPLE 29.5 : The following formula is used as a reference : (analyte signal) / (internal standard signal) = (f-factor) x (concentration of analyte) / (concentration of internal standard). A solution containing 3 mM of analyte and 4 mM of internal standard gave peak signals of 2 and 3 mamps respectively. Another similar solution containing 2 mM of analyte and 1 mM of internal standard gave peak signals of 1 and 4 mamps respectively. Find the average f-factor.