In differential centrifugation of cells with diameter D in centimeter, the square of D is given by D x D = [18n ln (RF / RI) ] / [ (RP – RFF) Wt ] where n is the fluid viscosity (poise), RF is the final radius of rotation (cm), RI is the initial radius of rotation (cm), RP is cell density (g/ml), RFF is the fluid density (g/ml), W the square for the rotational velocity in (radians / s) (radians / s), t is the time required to sediment from RI to RF (s). Derive an equation for W as a function for D, n, RF, RI, RP, RFF and t, with the stated units above, in radian
Answer / kang chuen tat (malaysia - pen
By algebraic formula, W = [18n ln (RF / RI) ] / [ (D x D) (RP – RFF) t ] where W is in (radians / s) (radians / s). One radian is approximately 57.288 degrees, then the W (radian) = (57.288) (57.288) W (degree) or W (in radian) = 3281.96 W (in degree). The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS 61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.
| Is This Answer Correct ? | 0 Yes | 0 No |
Explain the Deacon reaction?
Explain the use of gear pumps in motor?
ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.9 : In the modelling of the total of n rolls of a dice by an engineering student, let D be the random outcome of rolling a dice once. (a) Find the probability of outcome of D = 1, 2, 3, 4, 5 and 6. (b) Find the average score of each rolling of a dice D. (c) Find the expected value, Sn of n rolls of a dice in term of n and D. A new dice has a value of D* = D - 3.5. (d) Find the values of D* for each volume of D = 1, 2, 3, 4, 5 and 6. (e) Find the equivalent model of Sn in term of n and D. (f) Find the expected value of D*.
What is meant by surging in compressors?
PROCESS DESIGN - EXAMPLE 21.1 : According to rules of thumb in chemical process design, consider the use of an expander for reducing the pressure of a gas when more than 20 horsepowers can be recovered. The theoretical adiabatic horsepower (THp) for expanding a gas could be estimated from the equation : THp = Q [ Ti / (8130a) ] [ 1 - (Po / Pi) ^ a ] where 3 ^ 3 is 3 power 3 or 27, Q is volumetric flowrate in standard cubic feet per minute, Ti is inlet temperature in degree Rankine, a = (k - 1) / k where k = Cp / Cv, Po and Pi are reference and systemic pressures respectively. (a) Assume Cp / Cv = 1.4, Po = 14.7 psia, (temperature in degree Rankine) = [ (temperature in degree Celsius) + 273.15 ] (9 / 5), nitrogen gas at Pi = 90 psia and 25 degree Celsius flowing at Q = 230 standard cubic feet per minute is to be vented to the atmosphere. According to rules of thumb, should an expander or a valve be used? (b) Find the outlet temperature To by using the equation To = Ti (Po / Pi) ^ a.
REACTION ENGINEERING - EXAMPLE 13.2 : A batch reactor is designed for the system of the irreversible, elementary liquid-phase hydration of butylene oxide that produces butylene glycol. At the reaction temperature T = 323 K, the reaction rate constant is k = 0.00083 L / (mol - min). The initial concentration of butylene oxide is 0.25 mol / L = Ca. The reaction is conducted using water as the solvent, so that water is in large excess. (a) Let the molecular weight of water is 18 g / mol and the mass of 1 kg in 1 L of water, calculate the molar density of water, Cb in the unit of mol / L. (b) Determine the final conversion, X of butylene oxide in the batch reactor after t = 45 min of reaction time. Use the formula X = 1 - 1 / exp [ kt (Cb) ] derived from material balance. (c) Find the equation of t as a function of X.
What are the types of membranes used in RO water treatement plant?
What is a good device to use for obtaining viscosity data for a non-newtonian fluid?
Define octane number?
why traction voltage is 25kv
which is the major cement producing state in western India ?
What's the difference between superphosphate and triple super phosphate fertilizer?
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)