Explain how can you prevent bridging in a dilute phase pneumatic conveying system?
Answer / bharath chellaboyina
• Manufacturers of these systems recommend bin agitation or blowing air into the top of the feeding bin.
• These methods can prevent fine particle from bridging near the rotators valve.
• Two types of particles that are especially prone to bridging include titanium dioxide and calcined- kaolin clay.
| Is This Answer Correct ? | 0 Yes | 0 No |
How can one determine if a particular solid can be fluidized as in a fluidized bed?
Question 80 - Liquid octane has a density of 703 kilograms per cubic metre and molar mass of 114.23 grams per mole. Its specific heat capacity is 255.68 J / (mol K). (a) Find the energy in J needed to increase the temperature of 1 cubic metre of octane for 1 Kelvin. (b) At 20 degree Celsius, the solubility of liquid octane in water is 0.007 mg / L as stated in a handbook. For a mixture of 1 L of liquid octane and 1 L of water, prove by calculations that liquid octane is almost insoluble in water.
ENGINEERING MATERIAL - EXAMPLE 12.3 : Let a ^ 2 = a x a and a ^ 3 = a x a x a where ^ is power function. Niobium is a metal with a body-centered cubic structure. The length of the unit cell structure is b = 0.3349 nm. (a) Find the volume for a unit cell structure for niobium. (b) There are 2 atoms per unit cell structure of niobium. The metal has a molar mass of 92.9 g / mol. One mole of the metal consists of 6.02 x 10 ^ 23 atoms. Find the mass of niobium per unit cell and the density of niobium.
Explain how can you determine the largest impeller that a pump can handle?
Question 77 - The molecular weights M in kg / mol of 3 different monomers a, b and c in a polymer are Ma = 14, Mb = 16 and Mc = 18, with their respective quantities in N units having the ratio of Na : Nb : Nc = 2 : 3 : 5. (a) Find the numerical average molecular weight of the polymer by using the formula (Ma Na + Mb Nb + Mc Nc) / (Na + Nb + Nc). (b) Find the weighted average molecular weight of the polymer by using the formula (Ma Na Ma + Mb Nb Mb + Mc Nc Mc) / (Ma Na + Mb Nb + Mc Nc). (c) Calculate the polydispersity Q by using the answer in (b) divided by answer in (a). (d) Find the volumetric average molecular weight of the polymer by using the formula (Ma Na Ma Ma + Mb Nb Mb Mb + Mc Nc Mc Mc) / (Ma Na Ma + Mb Nb Mb + Mc Nc Mc). (e) Estimate the polydispersity Q by using the answer in (d) divided by answer in (b).
What are the different ways in which solids can be blended?
How can you keep our seawater used for heat rejection clean before entering our heat exchangers?
my qualification is b.tech- industrial biotech. i was read about many chemical engineering subject as a allied like unit operation, chemical thermodynamics, chemical reaction engineering , mass transfer and separation, downstream processing and principle of chemical engineering. and i have 2 yrs working exprience on in the field of instrumentation and control... and my query is "can i able work as process technologist" and which subject i want conc. more?........
Question 70 - According to Adolf Eugen Fick (1829 - 1901) : rate of diffusion v increases with less wall thickness t, increased area A and decreased molecular weight of a fluid M. The diffusion constant D decreased with increasing M. (a) By assuming v, t, dP, A, M and D changes proportionally of each other, find the equation of v as a function of t, dP, A and D. (b) The ratio of self diffusion constant D, at T = 273 K and P = 0.1 MPa, for gases B and C are 1.604 : 0.155. If only 2 gases exist in such a system : hydrogen and nitrogen, find the type of gas for B and C with reference to their molecular weights M. (c) By using the equation of kinetic energy 0.5 MV = constant where V = square of v, find the ratio of V for B and V for C, or V(B) / V(C), as a function of M(B) and M(C), where M(B) is molecular weight of B and M(C) the molecular weight of C : Graham's Law of Diffusion.
Are there any general rules for flushing slurry lines?
Question 37 - Calculate the bubble temperature T at P = 85-kPa for a binary liquid with x(1) = 0.4. The liquid solution is ideal. The saturation pressures are Psat(1) = exp [ 14.3 - 2945 / (T + 224) ], Psat(2) = exp [ 14.2 - 2943 / (T + 209) ] where T is in degree Celsius. Please take note that x(1) + x(2) = 1. Please take note that y(1) + y(2) = 1, y(1) = [ x(1) * Psat(1) ] / P, y(2) = [ x(2) * Psat(2) ] / P, * is multiplication. P is in kPa.
How can hexavalent chromium be removed from aqueous waste streams?
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)