In which state sulphur exists at 40 degrees temperature and 40 atmospheric pressure in natural gas having sulphur composition 0.1 ppm?


No Answer is Posted For this Question
Be the First to Post Answer

Post New Answer

More Chemical Engineering Interview Questions

Question 102 - (a) As an approximation, let v = Zc / 137 where v is the radial velocity for 1 s electron of an element, c is the speed of light, Z is the atomic number. For gold with Z = 79, find the radial velocity of its 1 s electron, in term of c and percentage of the speed of light. (b) As an approximation, let A x A = 1 - Z x Z / 18769 where A is the ratio of the relativistic and non-relativistic Bohr radius. Find the value of A.

1 Answers  


Which book I should refer for designing heat exchangers and reactors?

1 Answers  


Tell us about a time when you failed to meet a deadline. What were the repercussions?

4 Answers   Bhavani Engineering Works, Caltex, Emirates, Holiday Inn, Regent, United States Seafoods,


ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.13 (CORRECTION) : (i) In the Present Value Multiplication Rule, let PV = present value, Ra = interest rate for first discount, A = duration for first discount; Rc = interest rate for second discount, C = duration for second discount. Let PV = [ 1 / (1 + Ra) ^ A ] [ 1 / (1 + Rc) ^ C ] where ^ is the symbol of power : 3 ^ 2 = 3 x 3, 2 ^ 3 = 2 x 2 x 2. (a) For discounts involving 8 % / year for 3 years and 10 % / year for 9 years, find the value of PV. (b) If Re = interest rate for third discount, E = duration of third discount, form a mathematical equation of PV as a function of A, C, E, Ra, Rc, Re. Note : Discounts are available in the purchase of certain biochemical engineering instruments. (ii) Let R = nominal interest rate related to growth rate of money, r = real interest rate related to growth rate of purchase power. If I = inflation, where the unit of R, r and I is %, find the mathematical relationship of r as a function of R and I.

1 Answers  


In a furnace, 2 chemical reactions are happening – 1 mole of solid carbon reacts with 1 mole of oxygen gas to generate 1 mole of carbon dioxide gas; 1 mole of solid carbon reacts with 0.5 mole of oxygen gas to generate 1 mole of carbon monoxide gas. In a given process, 100 kmol of carbon is burned in a furnace. (a) Calculate the theoretical oxygen gas needed by assuming that all the carbon is burned completely to carbon dioxide gas. (b) Calculate the theoretical air needed by assuming that all the carbon is burned completely to carbon dioxide gas and there is only 21 % of oxygen gas. (c) Determine the amount of air required (in kmol) if 50 % excess oxygen gas must be satisfied for (a) and (b). (d) It has latter been found that 20 % of the carbon undergoes incomplete combustion resulting to carbon monoxide gas production. The rest of the carbon undergoes complete combustion. Calculate the total oxygen gas required stoichiometrically based on the actual process.

1 Answers  






what is AZ431 & how to check it by using multimeter?

0 Answers  


white rust formation over zinc plated and yellow passivated fasteners during CED painting. WHY?

0 Answers   Wheels India,


ENGINEERING MATHEMATICS - EXAMPLE 8.2 : In the US (United States), one barrel is equal to 42 US gallons and equivalent to 0.15898 cubic metres. One British barrel is equal to 36 Imperial gallons and equivalent to 0.163659 cubic metres. If an oil refinery in England sells 42 Imperial gallons of crude oil to a company in US, how much US gallons of crude oils has been sold?

1 Answers  


How can you estimate a gas flow based on two pressure measurements?

0 Answers  


MASS TRANSFER - EXAMPLE 4.3 : According to Adolf Eugen Fick (1829 - 1901) : rate of diffusion v increases with less wall thickness t, increased area A and decreased molecular weight of a fluid M. The diffusion constant D decreased with increasing M. (a) By assuming v, t, dP, A, M and D changes proportionally of each other, find the equation of v as a function of t, dP, A and D. (b) The ratio of self diffusion constant D, at T = 273 K and P = 0.1 MPa, for gases B and C are 1.604 : 0.155. If only 2 gases exist in such a system : hydrogen and nitrogen, find the type of gas for B and C with reference to their molecular weights M. (c) By using the equation of kinetic energy 0.5 MV = constant where V = square of v, find the ratio of V for B and V for C, or V(B) / V(C), as a function of M(B) and M(C), where M(B) is molecular weight of B and M(C) the molecular weight of C : Graham's Law of Diffusion.

1 Answers  


What are some common methods for helium leak testing a vacuum system?

0 Answers  


need the type of technical questions in written test

0 Answers  


Categories
  • Civil Engineering Interview Questions Civil Engineering (5085)
  • Mechanical Engineering Interview Questions Mechanical Engineering (4451)
  • Electrical Engineering Interview Questions Electrical Engineering (16632)
  • Electronics Communications Interview Questions Electronics Communications (3918)
  • Chemical Engineering Interview Questions Chemical Engineering (1095)
  • Aeronautical Engineering Interview Questions Aeronautical Engineering (239)
  • Bio Engineering Interview Questions Bio Engineering (96)
  • Metallurgy Interview Questions Metallurgy (361)
  • Industrial Engineering Interview Questions Industrial Engineering (259)
  • Instrumentation Interview Questions Instrumentation (3014)
  • Automobile Engineering Interview Questions Automobile Engineering (332)
  • Mechatronics Engineering Interview Questions Mechatronics Engineering (97)
  • Marine Engineering Interview Questions Marine Engineering (124)
  • Power Plant Engineering Interview Questions Power Plant Engineering (172)
  • Textile Engineering Interview Questions Textile Engineering (575)
  • Production Engineering Interview Questions Production Engineering (25)
  • Satellite Systems Engineering Interview Questions Satellite Systems Engineering (106)
  • Engineering AllOther Interview Questions Engineering AllOther (1379)