Question 32 – Let 1 ^ 1 = 1, 2 ^ 2 = 4, 3 ^ 3 = 27. By using the Excel computer programming – either by Solver or Goal Seek, find the value of v for the Van der Waals equation (P – a / v ^2) (v - b) = RT where a = 18.82, b = 0.1193, P = 2, R = 0.082, T = 5000 for benzene. Describe briefly how to use Solver and Goal Seek in Excel program of computer to find the solution quickly.
Answer / kang chuen tat (malaysia - pen
Answer 32 : Rearranging the equation gives P v^3 – (Pb + RT) v^2 – av + ab = 0. By using Excel program of computer v = 0.19322. Solver : FILE -> Options -> Add-Ins -> Solver Add-in. Goal seek : DATA -> What-If-Analysis -> Goal Seek. In both functions, Set cell / Objective, To value / Value Of, By changing cell / Changing Variable Cells should be used where To value / Value Of = 0, By changing cell / Change Variable Cells is the assumed v value, Set cell / Objective is the equation of function. The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.
| Is This Answer Correct ? | 0 Yes | 0 No |
describe why you are interested in a career in the oil industry?
Question 69 - A well delivers 225 US-gallons per minute of water to a chemical plant during normal system operation. (a) Calculate its flowrate in the unit of mega US-gallon per day or MGD. (b) The following formula is written next to the chlorine feed point : (chlorine feed rate, lb / day) = (flowrate, MGD) X (dose, mg / L) x (8.34). If this formula is correct, then what should the chlorine feed rate to be in pounds per day (lb / day) if the desired dose is 2 mg / L. (c) Prove by calculations that the constant 8.34 in the formula next to the chlorine feed point is correct. Let 1 US-gallon = 3.78541 L and 1 mg = 0.0000022046 pound.
how many TDS & TOTAL HARDNESS, PH of drinking water is recomanded for human being use.
PETROLEUM ENGINEERING - QUESTION 25.1 : Fact 1 : Dry air contains 20.95 % oxygen, 78.09 % nitrogen, 0.93 % argon, 0.039 % carbon dioxide, and small amounts of other gases by volume. Fact 2 : Volume occupied is directly proportional to the number of moles for ideal gases at constant temperature and pressure. Fact 3 : 12.5 moles of pure oxygen is required to completely burn 1 mole of pure octane. Fact 4 : Air-fuel ratio (AFR) is the mass ratio of dry air to fuel present in a combustion process such as in an internal combustion engine or industrial furnace. Fact 5 : Molecular weight of oxygen gas is 31.998 g / mole and molecular weight of nitrogen gas is 28.014 g / mole. (a) Find the molar ratio of nitrogen and oxygen, or (moles of nitrogen) / (moles of oxygen) in dry air, by assuming ideal features of nitrogen and oxygen gases. (b) How many moles of nitrogen are available if dry air is used to completely burn the 1 mole pure octane? (c) Find the mass of fuel of 1 mole of octane with molecular weight of 114.232 g / mole. (d) Find the mass of dry air with 12.5 moles of pure oxygen by assuming only oxygen and nitrogen gases exist in the air. (e) Find the air-fuel ratio (AFR) when octane is used as fuel. (f) Find the fuel-air ratio (FAR) when octane is used as fuel.
what is vacuum....?
What does extreme points in VLE curve represents??
4 Answers Reddy Labs, Reliance,
ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.20 : Assume an engineer buys a $1 bond in period T while the nominal interest rate is R. The inflation rate at T + 1 is anticipated to be I. (a) If the bond is redeemed in period T + 1, how much money will the buyer engineer receive, in term of R, which is not affected by inflation? (b) Find the present value, PV of the proceeds from the bond, in term of R and I. (c) If the bond is redeemed in period T + 1, calculate the real growth or real value of the money that the buyer engineer will receive, in term of r = real interest rate, which is affected by inflation. (d) From the answers in (b) and (c), find the values of x, y and z in the following Fisher equation : (1 + x) = (1 + y) / (1 + z), in term of r, R and I.
How can you prevent bridging in a dilute phase pneumatic conveying system?
Question 72 - (a) According to United States Department of Agriculture (USDA) (http://ndb.nal.usda.gov/ndb/search/list, accessed 12 August 2016), 100 g of potatoes generate 77 kcal of energy. For raw tomatoes, 111 g have 18 kcal of energy. Question : How much energy will one gain if 150 g of heated potatoes are eaten with 200 g of raw tomatoes? (b) If 1 Calorie = 1 food Calorie = 1 kilocalorie and 1000 calories = 1 food Calorie, then how many Calories are there in 9600 calories? (c) According to a food package of potato chips, 210 Calories are produced per serving size of 34 g. In actual experiment of food calorimetry lab, 1.75 g of potato chips, when burnt, will produce 9.6 Calories. For each serving size of potato chip, find the difference of Calories between the actual experimental value and the value stated on the food package. (d) The specific heat of water is c = 1 cal / (g.K) where cal is calory, g is gram and K is Kelvin. Then what is the temperature rise of water, in degree Celsius, when 150 g of water is heated by 9600 calories of burning food?
What is an additive?
oil field interview question
NATURAL GAS ENGINEERING - QUESTION 26.3 : The United States of America Energy Information Administration reports the following emissions in million metric tons of carbon dioxide in the world for year 2012 : Natural gas : 6799, petroleum : 11695, coal : 13787. Coal-fired electric power generation emits around 2000 pounds of carbon dioxide for every megawatt hour generated, which is almost double the carbon dioxide released by a natural gas-fired electric plant per megawatt hour generated. If 1 metric ton = 1000 kg and 1 pound = 0.4536 kg, estimate the total energy generated by natural gas in the world for year 2012, in gigawatt hour.
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)