NATURAL GAS ENGINEERING - QUESTION 26.2 : (a) The Hyperion sewage plant in Los Angeles burns 8 million cubic feet of natural gas per day to generate power in United States of America. If 1 metre = 3.28084 feet, then how many cubic metres of such gas is burnt per hour? (b) A reservoir of natural gas produces 50 mole % methane and 50 mole % ethane. At zero degree Celsius and one atmosphere, the density of methane gas is 0.716 g / L and the density of ethane gas is 1.3562 mg / (cubic cm). The molar mass of methane is 16.04 g / mol and molar mass of ethane is 30.07 g / mol. (i) Find the mass % of methane and ethane in the natural gas. (ii) Find the average density of the natural gas mixture in the reservoir at zero degree Celsius and one atmosphere, by assuming that the gases are ideal where final volume of the gas mixture is the sum of volume of the individual gases at constant temperature and pressure. (iii) Find the average density of the natural gas mixture in the reservoir at zero degree Celsius and one atmosphere, by assuming that the final mass of the gas mixture is the sum of mass of the individual gases. Assume the gases are ideal where mole % = volume % at constant pressure and temperature.



NATURAL GAS ENGINEERING - QUESTION 26.2 : (a) The Hyperion sewage plant in Los Angeles burns 8 milli..

Answer / kangchuentat

NATURAL GAS ENGINEERING - ANSWER 26.2 : (a) 1 foot = (1 / 3.28084) metre = 0.3048 metre, 1 cubic foot = 0.3048 x 0.3048 x 0.3048 cubic metre = 0.0283 cubic metre, 8 million cubic feet = 8 million cubic feet x (0.0283 cubic metre / cubic feet) = 0.2264 million cubic metres. If 0.2264 million cubic metres of gas is burnt per day, then 0.2264 million / 24 = 9433 cubic metres of gas is burnt per hour. (b)(i) Let 50 mole of methane and 50 mole of ethane in the gas. Mass (g) = Mole (mol) x Molar Mass (g / mol), then mass of methane = 50 x 16.04 = 802 and mass of ethane = 50 x 30.07 = 1503.5. Total mass of natural gas = 802 g + 1503.5 g = 2305.5 g, then mass % of methane = (802 / 2305.5) x 100 = 34.786 % and mass % of ethane = 100 - 34.786 = 65.214 %. (ii) Density of methane gas = 0.716 g / L, density of ethane gas = 1.3562 mg / (cubic cm) = 1.3562 mg / mL = 1.3562 g / L. Volume (V) = Mass (m) / Density (r). Then V = m / r = 0.34786 m / 0.716 + 0.65214 m / 1.3562 = 0.9667 m, average density, r = m / (0.9667 m) = 1.0344 g / L. (ii) Mass (m) = Volume (V) x Density (r). Then m = Vr = 0.5V x 0.716 + 0.5V x 1.3562 = 1.0361V, average density, r = 1.0361V / V = 1.0361 g / L. The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.

Is This Answer Correct ?    0 Yes 0 No

Post New Answer

More Chemical Engineering Interview Questions

Question 35 – A mixture consists of benzene (B), toluene (T) and xylene (X). At a temperature of 353 K, the data of vapor pressures : B : 754.12, T : 289.71, X : 91.19. Unit is mm Hg. The pressure P is 0.5 atm. The value of k for each substance is k = (vapor pressure) / P. (a) Calculate k for B, T and X. Let L / V = 0.65. (b) By using the equation V = F / [ (L / V) + 1 ], find the value of V when F = 100, then what is the value of L?

1 Answers  


Question 106 - In a wavefunction, let P(x) = A cos kx + B sin kx. By using the boundary conditions of x = 0 and x = l, where P(0) = P(l) = 0, prove by mathematical calculation that P(x) = B sin (npx / l) where p = 22 / 7 approximately, n is a rounded number. A, B and k are constants.

1 Answers  


ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.36 : Du Pont analysis is used to perform calculation on Return On Equity (ROE) for an engineering organization. Let Net Income = A; Earning Before Tax (EBT) = B; Earning Before Interest, Tax (EBIT) = C; Sales = D; Assets = E; Equity = F. In 5-step Du Pont formula, let Tax Burden = G = A / B; Interest Burden = H = B / C = 1.04; EBIT % = I = C / D = 0.27; Asset Turnover = J = D / E = 0.66; Leverage = K = E / F = 2.66; ROE = L = A / F. If (1 / G) = (4 / 3) : (a) find the value of L; (b) calculate the values of A, B, C, E and F when D = $1500; (c) verify the answer (b) is correct by using the answer (a).

1 Answers  


Question 77 - The molecular weights M in kg / mol of 3 different monomers a, b and c in a polymer are Ma = 14, Mb = 16 and Mc = 18, with their respective quantities in N units having the ratio of Na : Nb : Nc = 2 : 3 : 5. (a) Find the numerical average molecular weight of the polymer by using the formula (Ma Na + Mb Nb + Mc Nc) / (Na + Nb + Nc). (b) Find the weighted average molecular weight of the polymer by using the formula (Ma Na Ma + Mb Nb Mb + Mc Nc Mc) / (Ma Na + Mb Nb + Mc Nc). (c) Calculate the polydispersity Q by using the answer in (b) divided by answer in (a). (d) Find the volumetric average molecular weight of the polymer by using the formula (Ma Na Ma Ma + Mb Nb Mb Mb + Mc Nc Mc Mc) / (Ma Na Ma + Mb Nb Mb + Mc Nc Mc). (e) Estimate the polydispersity Q by using the answer in (d) divided by answer in (b).

1 Answers  


Explain what particle sizes are electrostatic precipitators used to remove?

0 Answers  






Explain how can you determine the proper pipe thickness for a slurry line?

0 Answers  


QUANTUM CHEMISTRY AND CHEMICAL ENGINEERING - EXAMPLE 31.9 : When an algebraic product is defined on the space, the Lie bracket is the commutator [x,y] = xy - yx according to Lie algebra in mathematics. If [p,x] f(x) = px f(x) - xp f(x), p = -ih d / dx, find the value of [p,x] in term of i and h.

1 Answers  


What happens when fuel is burned , what are compounds released??

3 Answers   Reddy Labs,


Why an electromagnetic flow meter cannot be used for gases, steam and oil flow measurements?

1 Answers  


ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.19 : In the purchase of a unit of engineering office, a loan has been made to a bank with the following details : Term N = 30 years; interest rate R = 8.07 % / year; security : primary residence; present value pv = $450000; salary = $75000 / year or $56000 / year after tax. (a) Let the discounted present value PV = [ 1 - 1 / (1 + r) ^ n ] / r for arrears, where r = interest rate of discount, n = number of payment, ^ = symbol for power. If the loan repayment was made monthly : (i) calculate the value of r where r = R / k and R is in decimal value; (ii) find the value of n where n = kN; (iii) estimate the value of k where k = number of repayment per year; (iv) calculate the value of PV based on the formula of discounted present value. (b) Calculate the monthly repayment of the loan, MR based on the following formula : pv = PV x MR. (c) Find the percentage of salary remains after paying the loan every month.

1 Answers  


For a given bulk solid how can the particle size distribution be determined?

0 Answers  


What is the average salary for chemical engineers?

0 Answers  


Categories
  • Civil Engineering Interview Questions Civil Engineering (5085)
  • Mechanical Engineering Interview Questions Mechanical Engineering (4451)
  • Electrical Engineering Interview Questions Electrical Engineering (16632)
  • Electronics Communications Interview Questions Electronics Communications (3918)
  • Chemical Engineering Interview Questions Chemical Engineering (1095)
  • Aeronautical Engineering Interview Questions Aeronautical Engineering (239)
  • Bio Engineering Interview Questions Bio Engineering (96)
  • Metallurgy Interview Questions Metallurgy (361)
  • Industrial Engineering Interview Questions Industrial Engineering (259)
  • Instrumentation Interview Questions Instrumentation (3014)
  • Automobile Engineering Interview Questions Automobile Engineering (332)
  • Mechatronics Engineering Interview Questions Mechatronics Engineering (97)
  • Marine Engineering Interview Questions Marine Engineering (124)
  • Power Plant Engineering Interview Questions Power Plant Engineering (172)
  • Textile Engineering Interview Questions Textile Engineering (575)
  • Production Engineering Interview Questions Production Engineering (25)
  • Satellite Systems Engineering Interview Questions Satellite Systems Engineering (106)
  • Engineering AllOther Interview Questions Engineering AllOther (1379)