COMPUTER PROGRAMMING FOR ENGINEERS - EXAMPLE 17.3 : (a) The byte is the basic building block of computer data used in chemical engineering process simulation where 16 bits make a word, 4 bits make a nibble, 32 bits make a quad word and 8 bits make a byte. Then how many nibbles are there in a megabytes? (b) In computer data items, let : 1 bit - counts from 0 to 1, 8 bits - counts from 0 to 255, 16 bits - counts from 0 to A. What is the value of A? (c) In a binary system of 4 bits, if 1100 = 12, 1101 = 13, 1110 = 14, 1111 = 15, B = 16, then guess the value of B. (d) By using any form of tools, find the exact value of 2 power 64 or 2^64.
COMPUTER PROGRAMMING FOR ENGINEERS - ANSWER 17.3 : (a) 4 bits as a nibble, then 8 bits as 2 nibbles and as a byte. Finally a megabytes make 2 meganibbles. (b) By induction, final number of count = 2 power (number of bit) - 1. For 16 bits, A = 2 power 16 - 1 = 65536 - 1 = 65535. (c) Undetermined and no answer for B since 1111 = 15 is maximum in a binary system of 4 bits. (d) By using web calculator, 2^64 = 18446744073709551616. The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.
| Is This Answer Correct ? | 0 Yes | 0 No |
THERMODYNAMIC - EXAMPLE 10.2 : A cylinder with a movable piston contains 0.1 mole of a monoatomic ideal gas. The piston moves through state a, b and c. The heat Q, changes from state c to a is + 685 J. The work W, changes from state c to a is - 120 J. The work, W performed from state a to b then to c is 75 J. By using the first law of thermodynamic, U = Q + W where U is the internal energy : (a) Determine the change in internal energy between states a and c. (b) Is heat added or removed from the gas when the gas is taken along the path abc? (c) Calculate the heat added or removed when the gas is taken along the path abc?
what is chemical engineering?
MASS TRANSFER - EXAMPLE 4.1 : A concentric, counter-current heat exchanger is used to cool lubricating oil. Water is used as the coolant. The mass flow rate of oil into the heat exchanger is 0.1 kg / s = FO. For oil, the inlet temperature TIO = 100 degree Celsius and the outlet temperature TOO = 55 degree Celsius. For water, the inlet temperature TIW = 35 degree Celsius and the outlet temperature TOW = 42 degree Celsius. What is the mass flow rate of water in kg / s, FW needed to maintain these operating conditions? Constant for heat capacity of oil is CO = 2131 J /(kg K) and for water is CW = 4178 J /(kg K). Use the equation (FO)(CO)(TIO ?TOO) = (FW)(CW)(TOW ?TIW).
What compounds are responsible for the odors that come from wastewater treatment plants?
What are the three classes of organic solvents?
How can I remove/decrease TDS from sewage waste water? At the moment it is 900gm/l. What is recommended TDS level to dispose sewage water in sea?
who is your present and most resent employer?
Question - Chemical Engineering Material - In crystal material, hexagonal crystal system could form 4-digit index in certain direction of solid. For [1(-1)0] direction in the hexagonal crystal systems of particular catalyst applied in fume removal of incinerator, what is the four-digit index for this direction? Hint : The transformation equations between the 3-digit [h’k’l’] and the 4-digit [hkil] indices are : h = (1/3) (2h’ – k’); i = - (h + k); k = (1/3) (2k’ – h’); l = l’. A. [(-1)100] B. [1(-1)00] C. [(-1)000] D. [00(-1)(-1)] E. [(-1)0(-1)0]
i am appearing in railway section engg. exam of chemical eng. therefore i want previous papers and study material of chemical eng.
MICROBIOLOGICAL ENGINEERING - QUESTION 28.2 : A hemocytometer is a device that is used for counting cells. In an engineering experiment, 100 microlitres of cell suspension is diluted with 50 microlitres of Trypan blue dye. Only death cells appear blue in color when stained with the dye. There are 57 cells detected in a hemocytometer, where 5.3 % of them appear blue when the chamber of the meter is placed under a microscope. Each square of a chamber can contain 0.0001 mL of liquid. (a) Calculate the number of viable cells. (b) The cells occupied 5 squares. Calculate the average number of viable cells / square. (c) Calculate the dilution factor of the cell suspension by using the formula : Dilution = final volume / initial volume. (d) Calculate the concentration of viable cells / mL by using the formula : Concentration = (Average number of viable cells / square) x dilution x (square / volume).
Corenuts technology interview questions
How 'saltation velocity' is used in designing pneumatic conveying systems?
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)