ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.28 : In the development of a small engineering facility for biochemical processing, completed contract method is applied in its construction accounting. In a short contract period, let the (contract price) = A. Let the (costs to date) = B; (estimated cost to complete) = C. (a) Find the values of : (i) estimated total costs; (ii) total estimated profit; (iii) percent completion to date. (b) If the project contract is 100 % completed : (i) find the total gross profit recognized; (ii) what is the exact numerical value of C?
ACCOUNTING AND FINANCIAL ENGINEERING - ANSWER 34.28 : (a)(i) Cost = B + C. (ii) Profit = A - (B + C). (iii) Percent = (100) B / (B + C). (b)(i) Profit = A - (B + C). Profit = A - B when C = 0. (ii) C = 0. The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.
| Is This Answer Correct ? | 0 Yes | 0 No |
QUANTUM COMPUTING - EXAMPLE 32.8 : In quantum computing, a quantum state is given by S = a | 00 > + b | 01 > + g | 10 > + d | 11 >. (a) Find S in term of | 0 > and | 1 > etc. (b) The probability of getting x is P(x). For S = 0.5 | 00 > + 0.5 | 01 > + 0.5 | 10 > + 0.5 | 11 >, find P(0) and P(1). Hint : P(00) + P(01) = P(0) = a x a + b x b, P(10) + P(11) = P(1) = g x g + d x d.
Question 60 – During the landing process of an airplane, the velocity is constant at v. (a) If the displacement of the plane is x at time t, find the differential equation that relates t, x and v. (b) The plane has 2 parts of wheels – the front and the back, separated by a distance L. The front part of the wheel touches the land first, that allows the straight body of the plane to form an angle T with the horizontal land. If the vertical distance between the back part of the wheel and the horizontal land is y, find the equation of y as a function of L and T. (c) Find the differential equation that relates dy as a function of dt, v and sin T. (d) Find the differential equation that consist of dy as a function of y, L, v and dt. (e) Find the equation of y as a function of v, L, t and C where C is a constant. (f) When t = 0, prove that y = exp C as the initial value of y.
Explain how can you quickly estimate the horsepower of a pump?
QUANTUM COMPUTING - EXAMPLE 32.6 : (a) Let H | 0 > = 0.707 ( | 0 > + | 1 > ), H | 1 > = 0.707 ( | 0 > - | 1 > ). Find the values for H | 0 > + H | 1 > and H | 0 > - H | 1 >. (b) In quantum computing, a qubyte is a quantum byte, or 8 quantum bits, a sequence processed as a unit. A qubit is a quantum bit. According to Alexander Holevo in his theorem, n qubits cannot carry more than n classical bits of information. What is the maximum amount of classical bits of information that can be carried by 1 qubyte.
A cylindrical vessel of 10m height has water upto 6m and is under a pressure of 15bar.What will be the pressure at the bottom most point of the vessel?
How can I treat a waste stream containing both hexavalent chromium and arsenic?
what are the chemicals used in PFR and MFR to Process?
What is the import procurement cycle?
For an ideal black body (A) absorptivity = 1 (B) reflectivity = 1 (C) emissivity = 0 which is true???????
Question 65 – A differential equation is given as y” + 5y’ + 6y = 0, y(0) = 2 and y’(0) = 3. By using Laplace transform, an engineer has correctly produced the equation L {y} = (2s + 13) / [(s + 2)(s + 3)] = A / (s + 2) + B (s + 3). (a) Find the values of A and B. (b) The inversed Laplace transform of 1 / (s + a) is given by exp (-at) where a is a constant. If the statement : L {y} = 9 L { exp (-2t) } - 7 L { exp (-3t) } is correct, find the equation of y as a function of t as a solution to the differential equation stated in the beginning of this question. When L {d} = 9 L {b} - 7 L {c}, then d = 9b - 7c with b, c and d are unknowns.
Explain the different types of equipments for the conveyance of solids?
ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.13 (CORRECTION) : (i) In the Present Value Multiplication Rule, let PV = present value, Ra = interest rate for first discount, A = duration for first discount; Rc = interest rate for second discount, C = duration for second discount. Let PV = [ 1 / (1 + Ra) ^ A ] [ 1 / (1 + Rc) ^ C ] where ^ is the symbol of power : 3 ^ 2 = 3 x 3, 2 ^ 3 = 2 x 2 x 2. (a) For discounts involving 8 % / year for 3 years and 10 % / year for 9 years, find the value of PV. (b) If Re = interest rate for third discount, E = duration of third discount, form a mathematical equation of PV as a function of A, C, E, Ra, Rc, Re. Note : Discounts are available in the purchase of certain biochemical engineering instruments. (ii) Let R = nominal interest rate related to growth rate of money, r = real interest rate related to growth rate of purchase power. If I = inflation, where the unit of R, r and I is %, find the mathematical relationship of r as a function of R and I.
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)