QUANTUM COMPUTING - EXAMPLE 32.8 : In quantum computing, a quantum state is given by S = a | 00 > + b | 01 > + g | 10 > + d | 11 >. (a) Find S in term of | 0 > and | 1 > etc. (b) The probability of getting x is P(x). For S = 0.5 | 00 > + 0.5 | 01 > + 0.5 | 10 > + 0.5 | 11 >, find P(0) and P(1). Hint : P(00) + P(01) = P(0) = a x a + b x b, P(10) + P(11) = P(1) = g x g + d x d.
QUANTUM COMPUTING - ANSWER 32.8 : (a) S = a | 00 > + b | 01 > + g | 10 > + d | 11 > = | 0 > ( a | 0 > + b | 1 > ) + | 1 > ( g | 0 > + d | 1 > ). (b) By comparison of S, a = b = g = d = 0.5. P(0) = a x a + b x b = 0.5 x 0.5 + 0.5 x 0.5 = 0.5, P(1) = g x g + d x d = 0.5 x 0.5 + 0.5 x 0.5 = 0.5. The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.
| Is This Answer Correct ? | 0 Yes | 0 No |
DIFFERENTIAL EQUATIONS - EXAMPLE 20.3 : A differential equation is given as y” + 5y’ + 6y = 0, y(0) = 2 and y’(0) = 3. By using Laplace transform, an engineer has correctly produced the equation L {y} = (2s + 13) / [(s + 2)(s + 3)] = A / (s + 2) + B (s + 3). (a) Find the values of A and B. (b) The inversed Laplace transform of 1 / (s + a) is given by exp (-at) where a is a constant. If the statement : L {y} = 9 L { exp (-2t) } - 7 L { exp (-3t) } is correct, find the equation of y as a function of t as a solution to the differential equation stated in the beginning of this question. When L {d} = 9 L {b} - 7 L {c}, then d = 9b - 7c with b, c and d are unknowns.
The process conditions of the fuel gas are as follows: Temperature = 25 deg C Pressure = 4 bar g Calculate the line size for the fuel gas supply line to the superheater
What are the Major Utility Systems in a Pharma Plant? How are they interrelated?
ENVIRONMENTAL ENGINEERING - QUESTION 22.1 : In order to predict the wastewater production, the population number has to be understood. The population data is : 72000 (for year 1961 or P-1961), 85000 (for year 1971 or P-1971), 110500 (for year 1981 or P-1981). (a) Find the average population increase, or [ (P-1981 - P-1971) + (P-1971 - P-1961) ] / 2. (b) Find the average percentage population increase, or [ (P-1981 - P-1971) / P-1971 + (P-1971 - P-1961) / P-1961 ] / (2) X 100. (c) Find the incremental increase or P-1981 - 2 (P-1971) + P-1961. (d) Let Po = P-1981. After 2 decades or n = 2, the population is P-2001. By using arithmetical increase method, find P-2001 = Po + n (Answer for a). (e) By using incremental increase method, find P-2001 = (Answer of d) + n (n + 1) (Answer of c) / 2. (f) By using geometrical increase method, find P-2001 = Po [ 1 + (Answer of b) / 100 ] ^ n where ^ is power sign, or 1 ^ 2 = 1 x 1 = 1. (g) If the actual P-2001 = 184000, which method of estimation is more accurate, based on your answer in (d), (e) and (f)?
What are the effects of oils on the properties of Polyolefins?
Question 112 - In quantum computing, let the amplitude A = a | 0 > + b | 1 >, | a | | a | + | b | | b | = 1. Find the values of b if A = 0.8 | 0 > + b | 1 >.
Explain how can viscosity affect the design of a mixer?
MASS TRANSFER - EXAMPLE 4.2 : In a non-dilute absorber, graphical method is used to represent the process. In an X - Y coordinate system, X-axis represents mole of carbon dioxide / mole of water and Y axis represents mole of carbon dioxide / mole of nitrogen. The inlet gas stream consists of 8 mol % of carbon dioxide in nitrogen. (a) Find the S / G minimum as a slope that goes through the point (0, 0.0304) and (0.0000488, 0.086957). (b) Find the actual slope of operating line when it is 1.5 times the S / G minimum! (c) Find the value of x for inlet gas stream when y = 1640 x, y is mole fraction of carbon dioxide in nitrogen.
How to calculate 40% of level in cylindrical vessel?
What is control valve ?
How can you estimate the efficiency of a pump?
wha is Adsorption column chromatography?
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)