MICROBIOLOGICAL ENGINEERING - QUESTION 28.1 : In the calculation of the growth of bacteria, colony forming unit (CFU) in serial dilution is used. In a laboratory, viable count assay is used to estimate CFU. Formula applied is CFU / mL = (number of colonies x dilution) / (amount plated, in unit mL). Acceptable plate count is either between 20 and 200 or between 30 and 300 according to 2 different references. A wastewater sample of 200 ml is added to and mixed with 1.8 L of sterile water. Another 200 ml of the mixture is added to and mixed with 1.8 L of sterile water. (a) Calculate the dilution of first mixture and the dilution of the second mixture. (b) 100 microlitres of wastewater samples from the first mixture and the second mixture are placed separately on 2 different alga plates. The first plate has 250 colonies and the second plate has 23 colonies. Calculate the average CFU / mL.
MICROBIOLOGICAL ENGINEERING - ANSWER 28.1 : (a) Dilution = (final volume of mixture) / (initial volume of mixture). First dilution = ( 0.2 + 1.8 ) L / (0.2 L) = 10. Second dilution = first dilution x ( 0.2 + 1.8 ) L / (0.2 L) = 10 x 10 = 100. (b) 100 microlitres = 100 microlitres x 1 mL / (1000 microlitres) = 0.1 mL. CFU / mL = (number of colonies x dilution) / (amount plated, in unit mL). In the first plate, CFU / mL = 250 x 10 / 0.1 = 25000. In the second plate, CFU / mL = 23 x 100 / 0.1 = 23000. Average CFU / mL = (first plated value + second plated value) / 2 = (25000 + 23000) / 2 = 24000. The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.
| Is This Answer Correct ? | 0 Yes | 0 No |
NATURAL GAS ENGINEERING - QUESTION 26.2 : (a) The Hyperion sewage plant in Los Angeles burns 8 million cubic feet of natural gas per day to generate power in United States of America. If 1 metre = 3.28084 feet, then how many cubic metres of such gas is burnt per hour? (b) A reservoir of natural gas produces 50 mole % methane and 50 mole % ethane. At zero degree Celsius and one atmosphere, the density of methane gas is 0.716 g / L and the density of ethane gas is 1.3562 mg / (cubic cm). The molar mass of methane is 16.04 g / mol and molar mass of ethane is 30.07 g / mol. (i) Find the mass % of methane and ethane in the natural gas. (ii) Find the average density of the natural gas mixture in the reservoir at zero degree Celsius and one atmosphere, by assuming that the gases are ideal where final volume of the gas mixture is the sum of volume of the individual gases at constant temperature and pressure. (iii) Find the average density of the natural gas mixture in the reservoir at zero degree Celsius and one atmosphere, by assuming that the final mass of the gas mixture is the sum of mass of the individual gases. Assume the gases are ideal where mole % = volume % at constant pressure and temperature.
ACCOUNTING AND FINANCIAL ENGINEERING - EXAMPLE 34.27 : A biochemical engineering consultancy applies construction accounting in its finance. Its project began on 1 January 2010. Total revenue generated from the project was $9000. On 1 January 2011 as the budget, $2000 had been spent, with $6000 expected. However, the project cost increased latter, causing deviation from its initial budget on 1 January 2012, where $7000 had been spent, with $1400 expected. Let (estimated total cost) = (spent cost) + (expected cost to be spent), (percentage completion) = 100 (spent cost) / (estimated total costs), (total expected profits) = (total revenue) - (estimated total costs). Calculate : (a) total expected profits on 1 January 2011 and 1 January 2012; (b) estimated total cost as and not as the budget; (c) percentage completion of the project since the project began, in the first and second years.
Explain how can you determine the proper pipe thickness for a slurry line?
What step should be taken in process industries if the process variable is oscillating?
Question 42 - According to Margules Equation, P = x(1) p(1) g(1) + x(2) p(2) g(2) for a two-component mixture where P is bubble pressure, x is mole fraction, p is saturation pressure, g is constant given by ln g(1) = x(2) A x(2). Find the value of A as a constant when P = 1.08 bar, p(1) = 0.82 bar, p(2) = 1.93 bar in a 50 : 50 mole fraction mixture. Estimate the pressure required to completely liquefy the 30 : 70 mixture using the same equation, by proving P = 1.39 bar. Take note that ln g(2) = x(1) A x(1), ln g(1) = x(2) A x(2).
what is the differance between Horizental and vertical heat exchanger?
11 Answers Bihar Caustic and Chemicals,
How can hexavalent chromium be removed from aqueous waste streams?
NATURAL GAS ENGINEERING - QUESTION 26.1 : (a) In natural gas pipe sizing, the length of the pipe from the gas source metre to the farthest appliances is 60 feet. The maximum capacities for typical metallic pipes of 60 feet in length are : 66 cubic feet per hour for pipe size of 0.5 inches; 138 cubic feet per hour for pipe size of 0.75 inches; 260 cubic feet per hour for pipe size of 1 inch. By using the longest run method : (i) Find the best pipe size needed for the capacity of 75 cubic feet per hour. (ii) Estimate the suitable range of capacities for the pipe size of 1 inch. (b) The maximum capacities for typical metallic pipes of 50 feet in length are : 73 cubic feet per hour for pipe size of 0.5 inches; 151 cubic feet per hour for pipe size of 0.75 inches; 285 cubic feet per hour for pipe size of 1 inch. By using the branch method find the best pipe size needed for the capacity of 75 cubic feet per hour when the length of the pipe from the gas source metre to the appliance is 52 feet.
Why cavitation is produced
how we can find solubility of liquid in amyl alcohol and relative solubility of amyl alcohol
Question 32 – Let 1 ^ 1 = 1, 2 ^ 2 = 4, 3 ^ 3 = 27. By using the Excel computer programming – either by Solver or Goal Seek, find the value of v for the Van der Waals equation (P – a / v ^2) (v - b) = RT where a = 18.82, b = 0.1193, P = 2, R = 0.082, T = 5000 for benzene. Describe briefly how to use Solver and Goal Seek in Excel program of computer to find the solution quickly.
We wanted to know how to impart various colors to copper wire by simply dipping them into various chemicals, formulations, etc. This copper wire is to be used by us for our hobby of making various art objects from copper wire.
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)