Golgappa.net | Golgappa.org | BagIndia.net | BodyIndia.Com | CabIndia.net | CarsBikes.net | CarsBikes.org | CashIndia.net | ConsumerIndia.net | CookingIndia.net | DataIndia.net | DealIndia.net | EmailIndia.net | FirstTablet.com | FirstTourist.com | ForsaleIndia.net | IndiaBody.Com | IndiaCab.net | IndiaCash.net | IndiaModel.net | KidForum.net | OfficeIndia.net | PaysIndia.com | RestaurantIndia.net | RestaurantsIndia.net | SaleForum.net | SellForum.net | SoldIndia.com | StarIndia.net | TomatoCab.com | TomatoCabs.com | TownIndia.com
Interested to Buy Any Domain ? << Click Here >> for more details...


CHEMICAL ENERGY BALANCE - EXAMPLE 11.2 : Calculate the cooling duty, H required to condense and cool acetone from 100 degree Celsius to 25 degree Celsius at atmospheric pressure. The heat of vaporization for acetone at its normal boiling point is 30.2 kJ / mol. The boiling point of acetone at atmospheric pressure is 56 degree Celsius. The flowrate of acetone through the condenser is 100 mol / s = N. Value of sensible heat needed to increase the temperature of acetone in liquid form from 25 to 56 degree Celsius is 4.06 kJ / mol. Value of sensible heat needed to increase the temperature of acetone in vapor form from 56 to 100 degree Celsius is 3.82 kJ / mol. Unit of H is kJ / s.



CHEMICAL ENERGY BALANCE - EXAMPLE 11.2 : Calculate the cooling duty, H required to condense and cool..

Answer / kangchuentat

CHEMICAL ENERGY BALANCE - ANSWER 11.2 : In the same state, total heat changes in heating = total heat changes in cooling for acetone. H = N ( total heat of sensible + heat of vaporization) = 100 (mol / s) [ (30.2) + (4.06 + 3.82) ] (kJ / mol) = 3808 kJ / s. The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.

Is This Answer Correct ?    1 Yes 0 No

Post New Answer

More Chemical Engineering Interview Questions

PROCESS CONTROL - EXAMPLE 6.1 : In a Laplace Transform Table, the Laplace transfer function of f(t) is F(s). When d(t) = f(t) then 1 = F(s). When x(t) = f(t) then X(s) = F(s). If d(t) is the impulse of a spring when d(t) = kx(t), then derive the equation for the impulse of a spring as X(s) in term of k. Next question : A controller has a transfer function a and the other controller has a transfer function b. The overall transfer function of both controllers is ab. What is the transfer function overall when both controllers have similar transfer function 1 / (Cs + k)?

1 Answers  


Question 52 - The half-life for first order reaction could be described in the differential equation dC / dt = -kC where k is a constant, C is concentration and t is time. (a) Find the equation of C as a function of t. (b) Find the half life for such reaction or the time required to reduce 50 % of the initial concentration, where k = 0.139 per minute. (c) When the initial concentration Co is 16 mol / cubic metre, how long does the reaction required to achieve the final concentration of 1 mol / cubic metre?

1 Answers  


Question 49 - According to rules of thumb in chemical process design, consider the use of an expander for reducing the pressure of a gas when more than 20 horsepowers can be recovered. The theoretical adiabatic horsepower (THp) for expanding a gas could be estimated from the equation : THp = Q [ Ti / (8130a) ] [ 1 - (Po / Pi) ^ a ] where 3 ^ 3 is 3 power 3 or 27, Q is volumetric flowrate in standard cubic feet per minute, Ti is inlet temperature in degree Rankine, a = (k - 1) / k where k = Cp / Cv, Po and Pi are reference and systemic pressures respectively. (a) Assume Cp / Cv = 1.4, Po = 14.7 psia, (temperature in degree Rankine) = [ (temperature in degree Celsius) + 273.15 ] (9 / 5), nitrogen gas at Pi = 90 psia and 25 degree Celsius flowing at Q = 230 standard cubic feet per minute is to be vented to the atmosphere. According to rules of thumb, should an expander or a valve be used? (b) Find the outlet temperature To by using the equation To = Ti (Po / Pi) ^ a.

1 Answers  


What is are the main terms in Unit Operations? and what is its charecteristics?

8 Answers   HPCL,


What are the main terms in unit operations? What are its characteristics?

0 Answers  


Question 94 - The resolution of separation, Rs for chromatography is given by the formula Rs = (difference in retention time) / (average width at the base). In a chromatogram, 3 peaks a, b and c are found. Average widths W at the bases of the solutes are : Wa = 20 s, Wb = 40 s, Wc = 30 s. Resolutions of separation, Rs for solutes b and c in comparison to a are 2 and 4 respectively. The differences in retention times T for b and c in comparison to a are (Tb - Ta) and (Tc - Ta), Ta = Tc - Tb : (a) Form 2 equations involving Rs as a function of Wa, Wb, Wc, Ta, Tb and Tc. (b) Find the values of Ta, Tb and Tc.

1 Answers  


Question 106 - In a wavefunction, let P(x) = A cos kx + B sin kx. By using the boundary conditions of x = 0 and x = l, where P(0) = P(l) = 0, prove by mathematical calculation that P(x) = B sin (npx / l) where p = 22 / 7 approximately, n is a rounded number. A, B and k are constants.

1 Answers  


Why should chemical equation be balanced?

0 Answers  


Why whenever a reciprocating compressor is switched ON or OFF it is put into unloading mode?

0 Answers  


Explain the largest application for surfactants?

0 Answers  


how to decide reflux ratio & its calculation

1 Answers  


what r the question asked in interview of gate,is it related to course?

0 Answers  


Categories
  • Civil Engineering Interview Questions Civil Engineering (5086)
  • Mechanical Engineering Interview Questions Mechanical Engineering (4456)
  • Electrical Engineering Interview Questions Electrical Engineering (16639)
  • Electronics Communications Interview Questions Electronics Communications (3918)
  • Chemical Engineering Interview Questions Chemical Engineering (1095)
  • Aeronautical Engineering Interview Questions Aeronautical Engineering (239)
  • Bio Engineering Interview Questions Bio Engineering (96)
  • Metallurgy Interview Questions Metallurgy (361)
  • Industrial Engineering Interview Questions Industrial Engineering (259)
  • Instrumentation Interview Questions Instrumentation (3014)
  • Automobile Engineering Interview Questions Automobile Engineering (332)
  • Mechatronics Engineering Interview Questions Mechatronics Engineering (97)
  • Marine Engineering Interview Questions Marine Engineering (124)
  • Power Plant Engineering Interview Questions Power Plant Engineering (172)
  • Textile Engineering Interview Questions Textile Engineering (575)
  • Production Engineering Interview Questions Production Engineering (25)
  • Satellite Systems Engineering Interview Questions Satellite Systems Engineering (106)
  • Engineering AllOther Interview Questions Engineering AllOther (1379)