Question 62 – The names of the flow streams could be represented by : H1 for first hot stream, H2 for second hot stream, C1 for first cold stream, C2 for second cold stream. Data of supply temperature Ts in degree Celsius : 150 for H1, 170 for H2, 30 for C1, 30 for C2. Data of target temperature Tt in degree Celsius : 50 for H1, 169 for H2, 150 for C1, 40 for C2. Data of heat capacity Cp in kW / degree Celsius : 3 for H1, 360 for H2, 3 for C1, 30 for C2. (a) Find the enthalpy changes, dH for all streams of flow H1, H2, C1 and C2 in the unit of kW. Take note of the formula dH = (Cp) (Tt - Ts). (b) Match the hot streams H1 and H2 with the suitable cold streams C1 and C2 to achieve the maximum energy efficiency.
Answer / kang chuen tat (malaysia - pen
Answer 62 – (a) dH for streams H1 : 3 (50 - 150) = -300 kW. H2 : 360 (169 - 170) = -360 kW. C1 : 3 (150 - 30) = 360 kW. C2 : 30 (40 - 30) = 300 kW. (b) dH (H1 + C2) = 0 kW; dH (H2 + C1) = 0 kW where all heats from hot utilities are supplied to cold utilities. Then H1 is matched to C2 and H2 is matched to C1.The answer is given by Kang Chuen Tat; PO Box 6263, Dandenong, Victoria VIC 3175, Australia; SMS +61405421706; chuentat@hotmail.com; http://kangchuentat.wordpress.com.
| Is This Answer Correct ? | 0 Yes | 0 No |
What is the Chemical Formula of Mineral Oil used in Transformer. It is Challenged for all Chemical Engineers.
6 Answers Ambuja, Oil and Gas Jobs,
what are your personal standards and how do you achive them?
ENGINEERING MATERIAL - EXAMPLE 12.3 : Let a ^ 2 = a x a and a ^ 3 = a x a x a where ^ is power function. Niobium is a metal with a body-centered cubic structure. The length of the unit cell structure is b = 0.3349 nm. (a) Find the volume for a unit cell structure for niobium. (b) There are 2 atoms per unit cell structure of niobium. The metal has a molar mass of 92.9 g / mol. One mole of the metal consists of 6.02 x 10 ^ 23 atoms. Find the mass of niobium per unit cell and the density of niobium.
In gas and water who's density is greater and why?
ENGINEERING ECONOMY - EXAMPLE 7.2 : In the purchase of a machine with a period n = 8.5 years, the minimum attractive rate of return, i = 12 %, the cost P = $55000, F = $4000 is the salvage, annual maintenance A = $3500. The return of the investment or equivalent uniform annual benefit is $15000. The equivalent uniform annual cost is P (A / P, i, n) + A - F (A / F, i, n). The investment is considered acceptable only when equivalent uniform annual benefit is greater than the equivalent uniform annual cost. From the compound interest table, (A / P, i = 12 %, n = 8 years) = 0.2013, (A / P, i = 12 %, n = 9 years) = 0.1877, (A / F, i = 12 %, n = 8 years) = 0.0813, (A / F, i = 12 %, n = 9 years) = 0.0677. Prove by calculations whether the investment above is acceptable.
Solve the first order differential equation : (Z 1)(dy/dx) = xy in term of ln |y| = f(x). Z = (x)(x).
Question 72 - (a) According to United States Department of Agriculture (USDA) (http://ndb.nal.usda.gov/ndb/search/list, accessed 12 August 2016), 100 g of potatoes generate 77 kcal of energy. For raw tomatoes, 111 g have 18 kcal of energy. Question : How much energy will one gain if 150 g of heated potatoes are eaten with 200 g of raw tomatoes? (b) If 1 Calorie = 1 food Calorie = 1 kilocalorie and 1000 calories = 1 food Calorie, then how many Calories are there in 9600 calories? (c) According to a food package of potato chips, 210 Calories are produced per serving size of 34 g. In actual experiment of food calorimetry lab, 1.75 g of potato chips, when burnt, will produce 9.6 Calories. For each serving size of potato chip, find the difference of Calories between the actual experimental value and the value stated on the food package. (d) The specific heat of water is c = 1 cal / (g.K) where cal is calory, g is gram and K is Kelvin. Then what is the temperature rise of water, in degree Celsius, when 150 g of water is heated by 9600 calories of burning food?
Explain some common piping materials used to transport slurries?
Question 77 - The molecular weights M in kg / mol of 3 different monomers a, b and c in a polymer are Ma = 14, Mb = 16 and Mc = 18, with their respective quantities in N units having the ratio of Na : Nb : Nc = 2 : 3 : 5. (a) Find the numerical average molecular weight of the polymer by using the formula (Ma Na + Mb Nb + Mc Nc) / (Na + Nb + Nc). (b) Find the weighted average molecular weight of the polymer by using the formula (Ma Na Ma + Mb Nb Mb + Mc Nc Mc) / (Ma Na + Mb Nb + Mc Nc). (c) Calculate the polydispersity Q by using the answer in (b) divided by answer in (a). (d) Find the volumetric average molecular weight of the polymer by using the formula (Ma Na Ma Ma + Mb Nb Mb Mb + Mc Nc Mc Mc) / (Ma Na Ma + Mb Nb Mb + Mc Nc Mc). (e) Estimate the polydispersity Q by using the answer in (d) divided by answer in (b).
motor vs pump
1 Answers Inogent Laboratories,
PETROLEUM ENGINEERING - QUESTION 25.2 : (a) The American Petroleum Institute gravity, or API gravity, is a measure of how heavy or light a petroleum liquid is compared to water. Let SG = specific gravity of petroleum liquid, and V = barrels of crude oil per metric ton. Given the formula for API gravity = 141.5 / SG - 131.5 and V = (API gravity + 131.5) / (141.5 x 0.159), find the relationship of SG as a function of V. (b) An oil barrel is about 159 litres. If a cylinder with diameter d = 50 cm and height h = 50 cm is used to contain the oil, find the volume V of the cylinder in the unit of oil barrel by using the formula V = 3.142 x d x h x d / 4. (c) First reference : 1 cubic metre = 6.2898 oil barrels. Second reference : 1 cubic metre = 6.37 oil barrels. What are the 2 factors that cause the difference in such reference data?
ENGINEERING MECHANIC - EXAMPLE 15.1 : What is the meaning – strain? In a distillation column, if a block 10 cm on a side is deformed so that it becomes 9 cm long, what is the strain involved in percentage?
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)