how can we calculate reflux ratio? what is difference between internal reflux and external reflux?
No Answer is Posted For this Question
Be the First to Post Answer
ENGINEERING PHYSICS - EXAMPLE 30.3 : (a) The quantum number m is given by m = -s, -s + 1. If s = 0.5, find the values of m. (b) | T > = (cos T) | V > + (sin T) | H >. The V and H states form a basis for all polarizations. Let cos T = 0.8. (i) If (sin T)(sin T) + (cos T)(cos T) = 1, find the value of sin T. (ii) For | T > = a | V > + b | H >, where a x a represents the probability of | V > and b x b represents the probability of | H >. Which one is more abundant, | V > or | H >? (iii) Find the value of T without using any mathematical tools.
BIOCHEMICAL ENGINEERING INSTRUMENTATION - EXAMPLE 29.3 : In thin layer chromatography (TLC), let retention factor Rf = (distance traveled by solute) / (distance traveled by solvent). Silica gel is used as stationary phase which is more polar than the hexane solvent as mobile phase. If the Rf values of 3 solutes A, B and C are 1.5, 0.75 and 1 respectively, compare the polarities of A, B and C with reasons.
why when we perform SCC of an alternator we always get a straight line even when 125% rated current is flown?
UNIT OPERATION - EXAMPLE 9.2 : A distillation column separates 10000 kg / hr of a mixture containing equal mass of benzene and toluene. The product D recovered from the condenser at the top of the column contains 95 % benzene, and the bottom W from the column contains 96 % toluene. The vapor V entering the condenser from the top of the column is 8000 kg / hr. A portion of the product from the condenser is returned to the column as reflux R, and the rest is withdrawn as the final product D. Assume that V, R, and D are identical in composition since V is condensed completely. Find the ratio of the amount refluxed R to the product withdrawn D. Hint : Solve the simultaneous equations as follow in order to find the answer (R / D) : 10000 = D + W; 10000 (0.5) = D (0.95) + W (0.04); 8000 = R + D.
MICROBIOLOGICAL ENGINEERING - QUESTION 28.2 : A hemocytometer is a device that is used for counting cells. In an engineering experiment, 100 microlitres of cell suspension is diluted with 50 microlitres of Trypan blue dye. Only death cells appear blue in color when stained with the dye. There are 57 cells detected in a hemocytometer, where 5.3 % of them appear blue when the chamber of the meter is placed under a microscope. Each square of a chamber can contain 0.0001 mL of liquid. (a) Calculate the number of viable cells. (b) The cells occupied 5 squares. Calculate the average number of viable cells / square. (c) Calculate the dilution factor of the cell suspension by using the formula : Dilution = final volume / initial volume. (d) Calculate the concentration of viable cells / mL by using the formula : Concentration = (Average number of viable cells / square) x dilution x (square / volume).
What are some good strategies for curing tube vibration in shell and tube exchangers?
Why reflux is necessary in distillation column?
What is the iodine value of spent carbon?How iodine value is used to determine the power of carbon to adsorb?
Question 79 - (a) The American Petroleum Institute gravity, or API gravity, is a measure of how heavy or light a petroleum liquid is compared to water. Let SG = specific gravity of petroleum liquid, and V = barrels of crude oil per metric ton. Given the formula for API gravity = 141.5 / SG - 131.5 and V = (API gravity + 131.5) / (141.5 x 0.159), find the relationship of SG as a function of V. (b) An oil barrel is about 159 litres. If a cylinder with diameter d = 50 cm and height h = 50 cm is used to contain the oil, find the volume V of the cylinder in the unit of oil barrel by using the formula V = 3.142 x d x h x d / 4. (c) First reference : 1 cubic metre = 6.2898 oil barrels. Second reference : 1 cubic metre = 6.37 oil barrels. What are the 2 factors that cause the difference in such reference data?
CHEMICAL FLUID MECHANIC - EXAMPLE 3.3 : The drag coefficient Cd = 0.05 and lift coefficient Cl = 0.4 for a levelled flow aircraft are measured. The velocity of the aircraft is v = 150 ft / s with its weight W = 2677.5 pound-force. (a) Find the value of the lift of the aircraft, L, when it is also its weight. (b) The drag of the aircraft, D = Cd M, L = Cl M. Find the value of D. (c) The power required is P = Dv. If 1 pound-force x (ft / s) = 1.356 W, find the value of P in the unit of Watt or W.
In a furnace, 2 chemical reactions are happening – 1 mole of solid carbon reacts with 1 mole of oxygen gas to generate 1 mole of carbon dioxide gas; 1 mole of solid carbon reacts with 0.5 mole of oxygen gas to generate 1 mole of carbon monoxide gas. In a given process, 100 kmol of carbon is burned in a furnace. (a) Calculate the theoretical oxygen gas needed by assuming that all the carbon is burned completely to carbon dioxide gas. (b) Calculate the theoretical air needed by assuming that all the carbon is burned completely to carbon dioxide gas and there is only 21 % of oxygen gas. (c) Determine the amount of air required (in kmol) if 50 % excess oxygen gas must be satisfied for (a) and (b). (d) It has latter been found that 20 % of the carbon undergoes incomplete combustion resulting to carbon monoxide gas production. The rest of the carbon undergoes complete combustion. Calculate the total oxygen gas required stoichiometrically based on the actual process.
is extractive distillationӞH
Civil Engineering (5086)
Mechanical Engineering (4456)
Electrical Engineering (16639)
Electronics Communications (3918)
Chemical Engineering (1095)
Aeronautical Engineering (239)
Bio Engineering (96)
Metallurgy (361)
Industrial Engineering (259)
Instrumentation (3014)
Automobile Engineering (332)
Mechatronics Engineering (97)
Marine Engineering (124)
Power Plant Engineering (172)
Textile Engineering (575)
Production Engineering (25)
Satellite Systems Engineering (106)
Engineering AllOther (1379)