Golgappa.net | Golgappa.org | BagIndia.net | BodyIndia.Com | CabIndia.net | CarsBikes.net | CarsBikes.org | CashIndia.net | ConsumerIndia.net | CookingIndia.net | DataIndia.net | DealIndia.net | EmailIndia.net | FirstTablet.com | FirstTourist.com | ForsaleIndia.net | IndiaBody.Com | IndiaCab.net | IndiaCash.net | IndiaModel.net | KidForum.net | OfficeIndia.net | PaysIndia.com | RestaurantIndia.net | RestaurantsIndia.net | SaleForum.net | SellForum.net | SoldIndia.com | StarIndia.net | TomatoCab.com | TomatoCabs.com | TownIndia.com
Interested to Buy Any Domain ? << Click Here >> for more details...

Topic :: Molecular





Molecular Interview Questions
Questions Answers Views Company eMail

Which type of column should i use to check the purity of high molecular weight protein using HPLC reverse phase column chromatography? Hi everyone. I wanna to check the purity of high molecular weight protein (collagen) with MW of ~130 kDa using a HPLC. I know C18

Petronas, Shanghai Ocean University,

1856

who is the father of molecular biology?

2 4568

Question 50 - An aqueous solution with 2.5 g of a protein dissolved in 600 cubic centimeters of a solution at 20 degree Celsius was placed in a container that has a water-permeable membrane. Water permeated through the membrane until the h - level of the solution was 0.9 cm above the pure water. (a) Calculate the absolute temperature of the solution, T in Kelvin, where T (Kelvin) = T (degree Celsius) + 273.15. (b) Calculate the osmotic pressure, P of the solution by using the formula P = hrg where h is level of the solution, r is density of water with 1000 kg per cubic meter, g = 9.81 N / kg as gravitational acceleration. (c) Calculate the concentration of the protein solution, C in kg / cubic meter. (d) Calculate the molecular weight of the protein, (MW) = CRT / P where R = 8.314 Pa cubic meter / (mol K) as ideal gas constant.

1 2546

Question 51 - A batch reactor is designed for the system of the irreversible, elementary liquid-phase hydration of butylene oxide that produces butylene glycol. At the reaction temperature T = 323 K, the reaction rate constant is k = 0.00083 L / (mol - min). The initial concentration of butylene oxide is 0.25 mol / L = Ca. The reaction is conducted using water as the solvent, so that water is in large excess. (a) Let the molecular weight of water is 18 g / mol and the mass of 1 kg in 1 L of water, calculate the molar density of water, Cb in the unit of mol / L. (b) Determine the final conversion, X of butylene oxide in the batch reactor after t = 45 min of reaction time. Use the formula X = 1 - 1 / exp [ kt (Cb) ] derived from material balance. (c) Find the equation of t as a function of X.

1 2946

Question 70 - According to Adolf Eugen Fick (1829 - 1901) : rate of diffusion v increases with less wall thickness t, increased area A and decreased molecular weight of a fluid M. The diffusion constant D decreased with increasing M. (a) By assuming v, t, dP, A, M and D changes proportionally of each other, find the equation of v as a function of t, dP, A and D. (b) The ratio of self diffusion constant D, at T = 273 K and P = 0.1 MPa, for gases B and C are 1.604 : 0.155. If only 2 gases exist in such a system : hydrogen and nitrogen, find the type of gas for B and C with reference to their molecular weights M. (c) By using the equation of kinetic energy 0.5 MV = constant where V = square of v, find the ratio of V for B and V for C, or V(B) / V(C), as a function of M(B) and M(C), where M(B) is molecular weight of B and M(C) the molecular weight of C : Graham's Law of Diffusion.

1 2300

Question 75 - The molecular weights M in kg / mol of 3 different monomers a, b and c in a polymer are Ma = 14, Mb = 16 and Mc = 18. The fraction of polymer chain X of 3 different monomers a, b and c in a polymer are Xa = 0.5, Xb = 0.3 and Xc = 0.2. (i) Calculate number average molecular weight by using the formula Ma Xa + Mb Xb + Mc Xc. (ii) Calculate weight average molecular weight by using the formula (Ma Xa Ma + Mb Xb Mb + Mc Xc Mc) / (Ma Xa + Mb Xb + Mc Xc). (iii) Calculate the polydispersity by using the answer in (ii) divided by answer in (i). (iv) If the molecular weight of repeat unit is 12, calculate the degree of polymerization by using the formula (Ma Xa + Mb Xb + Mc Xc) / (molecular weight of repeat unit).

1 2532

Question 77 - The molecular weights M in kg / mol of 3 different monomers a, b and c in a polymer are Ma = 14, Mb = 16 and Mc = 18, with their respective quantities in N units having the ratio of Na : Nb : Nc = 2 : 3 : 5. (a) Find the numerical average molecular weight of the polymer by using the formula (Ma Na + Mb Nb + Mc Nc) / (Na + Nb + Nc). (b) Find the weighted average molecular weight of the polymer by using the formula (Ma Na Ma + Mb Nb Mb + Mc Nc Mc) / (Ma Na + Mb Nb + Mc Nc). (c) Calculate the polydispersity Q by using the answer in (b) divided by answer in (a). (d) Find the volumetric average molecular weight of the polymer by using the formula (Ma Na Ma Ma + Mb Nb Mb Mb + Mc Nc Mc Mc) / (Ma Na Ma + Mb Nb Mb + Mc Nc Mc). (e) Estimate the polydispersity Q by using the answer in (d) divided by answer in (b).

1 2312

Question 78 - Fact 1 : Dry air contains 20.95 % oxygen, 78.09 % nitrogen, 0.93 % argon, 0.039% carbon dioxide, and small amounts of other gases by volume. Fact 2 : Volume occupied is directly proportional to the number of moles for ideal gases at constant temperature and pressure. Fact 3 : 12.5 moles of pure oxygen is required to completely burn 1 mole of pure octane. Fact 4 : Air–fuel ratio (AFR) is the mass ratio of dry air to fuel present in a combustion process such as in an internal combustion engine or industrial furnace. Fact 5 : Molecular weight of oxygen gas is 31.998 g / mole and molecular weight of nitrogen gas is 28.014 g / mole. (a) Find the molar ratio of nitrogen and oxygen, or (moles of nitrogen) / (moles of oxygen) in dry air, by assuming ideal features of nitrogen and oxygen gases. (b) How many moles of nitrogen are available if dry air is used to completely burn the 1 mole pure octane? (c) Find the mass of fuel of 1 mole of octane with molecular weight of 114.232 g / mole. (d) Find the mass of dry air with 12.5 moles of pure oxygen by assuming only oxygen and nitrogen gases exist in the air. (e) Find the air-fuel ratio (AFR) when octane is used as fuel. (f) Find the fuel-air ratio (FAR) when octane is used as fuel.

1 2642

MASS TRANSFER - EXAMPLE 4.3 : According to Adolf Eugen Fick (1829 - 1901) : rate of diffusion v increases with less wall thickness t, increased area A and decreased molecular weight of a fluid M. The diffusion constant D decreased with increasing M. (a) By assuming v, t, dP, A, M and D changes proportionally of each other, find the equation of v as a function of t, dP, A and D. (b) The ratio of self diffusion constant D, at T = 273 K and P = 0.1 MPa, for gases B and C are 1.604 : 0.155. If only 2 gases exist in such a system : hydrogen and nitrogen, find the type of gas for B and C with reference to their molecular weights M. (c) By using the equation of kinetic energy 0.5 MV = constant where V = square of v, find the ratio of V for B and V for C, or V(B) / V(C), as a function of M(B) and M(C), where M(B) is molecular weight of B and M(C) the molecular weight of C : Graham's Law of Diffusion.

1 2404

REACTION ENGINEERING - EXAMPLE 13.2 : A batch reactor is designed for the system of the irreversible, elementary liquid-phase hydration of butylene oxide that produces butylene glycol. At the reaction temperature T = 323 K, the reaction rate constant is k = 0.00083 L / (mol - min). The initial concentration of butylene oxide is 0.25 mol / L = Ca. The reaction is conducted using water as the solvent, so that water is in large excess. (a) Let the molecular weight of water is 18 g / mol and the mass of 1 kg in 1 L of water, calculate the molar density of water, Cb in the unit of mol / L. (b) Determine the final conversion, X of butylene oxide in the batch reactor after t = 45 min of reaction time. Use the formula X = 1 - 1 / exp [ kt (Cb) ] derived from material balance. (c) Find the equation of t as a function of X.

1 2264

BIOPROCESS ENGINEERING - EXAMPLE 14.2 : An aqueous solution with 2.5 g of a protein dissolved in 600 cubic centimeters of a solution at 20 degree Celsius was placed in a container that has a water-permeable membrane. Water permeated through the membrane until the h - level of the solution was 0.9 cm above the pure water. (a) Calculate the absolute temperature of the solution, T in Kelvin, where T (Kelvin) = T (degree Celsius) + 273.15. (b) Calculate the osmotic pressure, P of the solution by using the formula P = hrg where h is level of the solution, r is density of water with 1000 kg per cubic meter, g = 9.81 N / kg as gravitational acceleration. (c) Calculate the concentration of the protein solution, C in kg / cubic meter. (d) Calculate the molecular weight of the protein, (MW) = CRT / P where R = 8.314 Pa cubic meter / (mol K) as ideal gas constant.

1 2517

POLYMER ENGINEERING - QUESTION 24.1 : The molecular weights M in kg / mol of 3 different monomers a, b and c in a polymer are Ma = 14, Mb = 16 and Mc = 18. The fraction of polymer chain X of 3 different monomers a, b and c in a polymer are Xa = 0.5, Xb = 0.3 and Xc = 0.2. (i) Calculate number average molecular weight by using the formula Ma Xa + Mb Xb + Mc Xc. (ii) Calculate weight average molecular weight by using the formula (Ma Xa Ma + Mb Xb Mb + Mc Xc Mc) / (Ma Xa + Mb Xb + Mc Xc). (iii) Calculate the polydispersity by using the answer in (ii) divided by answer in (i). (iv) If the molecular weight of repeat unit is 12, calculate the degree of polymerization by using the formula (Ma Xa + Mb Xb + Mc Xc) / (molecular weight of repeat unit).

1 2458

POLYMER ENGINEERING - QUESTION 24.3 : The molecular weights M in kg / mol of 3 different monomers a, b and c in a polymer are Ma = 14, Mb = 16 and Mc = 18, with their respective quantities in N units having the ratio of Na : Nb : Nc = 2 : 3 : 5. (a) Find the numerical average molecular weight of the polymer by using the formula (Ma Na + Mb Nb + Mc Nc) / (Na + Nb + Nc). (b) Find the weighted average molecular weight of the polymer by using the formula (Ma Na Ma + Mb Nb Mb + Mc Nc Mc) / (Ma Na + Mb Nb + Mc Nc). (c) Calculate the polydispersity Q by using the answer in (b) divided by answer in (a). (d) Find the volumetric average molecular weight of the polymer by using the formula (Ma Na Ma Ma + Mb Nb Mb Mb + Mc Nc Mc Mc) / (Ma Na Ma + Mb Nb Mb + Mc Nc Mc). (e) Estimate the polydispersity Q by using the answer in (d) divided by answer in (b).

1 2159

PETROLEUM ENGINEERING - QUESTION 25.1 : Fact 1 : Dry air contains 20.95 % oxygen, 78.09 % nitrogen, 0.93 % argon, 0.039 % carbon dioxide, and small amounts of other gases by volume. Fact 2 : Volume occupied is directly proportional to the number of moles for ideal gases at constant temperature and pressure. Fact 3 : 12.5 moles of pure oxygen is required to completely burn 1 mole of pure octane. Fact 4 : Air-fuel ratio (AFR) is the mass ratio of dry air to fuel present in a combustion process such as in an internal combustion engine or industrial furnace. Fact 5 : Molecular weight of oxygen gas is 31.998 g / mole and molecular weight of nitrogen gas is 28.014 g / mole. (a) Find the molar ratio of nitrogen and oxygen, or (moles of nitrogen) / (moles of oxygen) in dry air, by assuming ideal features of nitrogen and oxygen gases. (b) How many moles of nitrogen are available if dry air is used to completely burn the 1 mole pure octane? (c) Find the mass of fuel of 1 mole of octane with molecular weight of 114.232 g / mole. (d) Find the mass of dry air with 12.5 moles of pure oxygen by assuming only oxygen and nitrogen gases exist in the air. (e) Find the air-fuel ratio (AFR) when octane is used as fuel. (f) Find the fuel-air ratio (FAR) when octane is used as fuel.

1 2205

What is the molecular formula of phosphorous?

1023




Related Topics


Un-Answered Questions { Molecular }

The elution volume of an enzyme on a gel filtration column can be predicted from a) its enzyme activity b) its protein absorbance at 280 nm c) subunit composition and monomer molecular mass(es) d) Choices a) and b) are both correct.

3211


What are oesophageal molecular markers?

2052


How molecular taxonomy has affected bacterial classification?

2128


Calculate the molar extinction coefficient of a solution containing 5 *10-4 g litre-1 of a biomolecule, molecular weight 275 g mol-1, and absorbance 0.75 in a 1.2 cm cuvette.

3096


Which type of column should i use to check the purity of high molecular weight protein using HPLC reverse phase column chromatography? Hi everyone. I wanna to check the purity of high molecular weight protein (collagen) with MW of ~130 kDa using a HPLC. I know C18

1856


What is the molecular formula of phosphorous?

1023


How do you define the molecularity of a reaction?

1025


What is the endosymbiotic hypothesis about the origin of mitochondria? What are the molecular facts that support the hypothesis? To which other cellular organelles the hypothesis can also be applied?

831


What are the molecular facts that support the hypothesis? To which other cellular organelles the hypothesis can also be applied?

911


What is the molecular formula, structure, and bond angle of phosphorous?

978


What are the bioinformatic tools applied to micromolecular evolution?

984


Which is the autotrophic group responsible for the production of most part of the molecular oxygen of earth?

528


When are intermolecular forces the strongest?

916


Convert the molecular structure of the hydrocarbon c5h12 into its straight-chain condensed structural formula?

903


Explain when are intermolecular forces the strongest?

900