Chemical Engineering Interview Questions
Questions Answers Views Company eMail

Heat transfer: In a steady state one dimensional conduction with no heat generation, the differential equation is d / dx (k dT / dx) = 0. Prove that T(x) = ax b, where k, a and b are constants. (b) At x = 0, T = c and at x = L, T = d. Prove that T(x) = (d - c) x / L c for boundary conditions.

1 1514

Question 84 - In Mendelian genetics, yellow (Y) is dominant to green (y) and round (R) is dominant to wrinkled (r). (a) What is the probability P of Rr x Rr producing wrinkled seeds? (b) What is the probability P of Yy x yy producing green seeds? (c) What is the probability that RRYy x RrYy would produce RrYy?

1 1638

Question 85 - (a) Three genes, I, J and K are available. All these genes are linked with respect to one another. If the percent recombination between I and J is 8 %, that between J and K is 10 %, and that between K and I is 18 %, what is the order of the gene? (b) Twenty six genes, a, b, c, d, e, f, ... x, y and z are available. All these genes are linked with respect to one another. If the percent recombination between a and b is 3 %, between b and c is 3 %, between c and d is 3 %, ... between w and x is 3 %, between x and y is 3 %, between y and z is 3 %, then what is the percentage recombination between b and y?

1 1720

Question 86 - (a) Male with genotype GGmm and phenotype gray wingless mates with female with genotype ggMM and phenotype black winged in fruit flies. G is dominant to g in color. M is dominant to m in wing shape. If the actual distribution of the second generation of the fruit flies was as follow : 890 gray wingless, 900 black winged, 115 gray winged, 95 black wingless, calculate the recombination frequency betwen the two genes and distance in recombination units. Let 1 map unit = 1 % recombination. (b) A DNA molecule has 180 base pairs and 20 % adenine. How many cytosine nucleotides are present in this molecule of DNA?

1 1763

PROCESS CONTROL - EXAMPLE 6.1 : In a Laplace Transform Table, the Laplace transfer function of f(t) is F(s). When d(t) = f(t) then 1 = F(s). When x(t) = f(t) then X(s) = F(s). If d(t) is the impulse of a spring when d(t) = kx(t), then derive the equation for the impulse of a spring as X(s) in term of k. Next question : A controller has a transfer function a and the other controller has a transfer function b. The overall transfer function of both controllers is ab. What is the transfer function overall when both controllers have similar transfer function 1 / (Cs + k)?

1 1713

Question 87 - According to Hardy-Weinberg Equation, p x p + 2 x p x q + q x q = 1 where p = dominant allele frequency and q = recessive allele frequency. Let p + q = 1. Fraction of population has 2 copies of the p gene = p x p. Fraction of population has 2 copies of the q gene = q x q. Fraction of population has a copy of p gene and a copy of q gene = 2 x p x q. In a small town, the allele frequency is q = 0.2 for a recessive gene, the delta-32 mutation, that gives human protection from HIV infection. (a) Find the allele frequency a dominant gene, p. (b) What percent of the population has at least a copy of the gene that cause the population either immune to HIV or less susceptible to the disease?

1 1738

Question 88 - In the calculation of the growth of bacteria, colony forming unit (CFU) in serial dilution is used. In a laboratory, viable count assay is used to estimate CFU. Formula applied is CFU / mL = (number of colonies x dilution) / (amount plated, in unit mL). Acceptable plate count is either between 20 and 200 or between 30 and 300 according to 2 different references. A wastewater sample of 200 ml is added to and mixed with 1.8 L of sterile water. Another 200 ml of the mixture is added to and mixed with 1.8 L of sterile water. (a) Calculate the dilution of first mixture and the dilution of the second mixture. (b) 100 microlitres of wastewater samples from the first mixture and the second mixture are placed separately on 2 different alga plates. The first plate has 250 colonies and the second plate has 23 colonies. Calculate the average CFU / mL.

1 2397

PROCESS CONTROL - EXAMPLE 6.2 : A stream with volumetric flow rate Q enters a cylindrical tank and a stream with volumetric flow rate q exits the tank. The fluid has a constant heat capacity and density. There is no temperature change or chemical reaction occurring in the tank. Develop a model for determining the height of the tank, h. Let V is the volume, A is the cross sectional area, r is the density, m is the mass, where V and A are for the tank, r and m are for the fluid. The rate of mass of fluid accumulation, dm / dt = (Q - q) r. Prove the model to be dh / dt = (Q - q) / A.

1 1549

PROCESS CONTROL - EXAMPLE 6.3 : The differential equation is 3 dy / dt + 2y = 1 with y(0) = 1. (a) The Laplace transformation, L for given terms are : L (dy / dt) = sY(s) - y(0), L(y) = Y(s), L(1) = 1 / s. Use such transformation to find Y(s). (b) The initial value theorem states that : When t approaches 0 for a function of y(t), it is equal to a function of sY(s) when s approaches infinity. Use the initial value theorem as a check to the answer found in part (a).

1 1703

Question 89 - A hemocytometer is a device that is used for counting cells. In an engineering experiment, 100 microlitres of cell suspension is diluted with 50 microlitres of Trypan blue dye. Only death cells appear blue in color when stained with the dye. There are 57 cells detected in a hemocytometer, where 5.3 % of them appear blue when the chamber of the meter is placed under a microscope. Each square of a chamber can contain 0.0001 mL of liquid. (a) Calculate the number of viable cells. (b) The cells ocupied 5 squares. Calculate the average number of viable cells / square. (c) Calculate the dilution factor of the cell suspension by using the formula : Dilution = final volume / initial volume. (d) Calculate the concentration of viable cells / mL by using the formula : Concentration = (Average number of viable cells / square) x dilution x (square / volume).

1 3674

ENGINEERING ECONOMY - EXAMPLE 7.1 : In engineering economy, the future value of first year is FV = PV (1 + i). For second year it is FV = PV (1 + i) (1 + i). For third year it is FV = PV (1 + i) (1 + i)(1 + i) where FV = future value, PV = present value, i = interest rate per period, n = the number of compounding periods. By induction, what is the future value of $1000 for 5 years at the interest rate of 6 %?

1 1588

Question 90 - In the calculation of the growth of bacteria, absorbance, A in spectrophotometry is used. According to Beer-Lambert Law, A = e x l x c where A is the absorbance of the solution (no unit), l is the distance of light travels through the solution (in cm), e is the molar absorptivity or the molar extinction coefficient [ in L / (mol.cm) ]. For a particular solute and fixed path length : As / Ao = Cs / Co where Ao is the observed signal for a known concentration Co, and As is the observed signal for a sample concentration Cs. (a) For a cell concentration of 560 cells / mL, a spectrophotometre gives an absorbance reading of 1.0. A mixture of concentration 3600000 cells / mL can be diluted in several operations, with each operation having a dilution of 1:20. How many dilutions should be made so that the concentration of this mixture can be calculated within a range of A = 0.0 to 1.0. (b) In another experiment, a sample tube of 1 cm in width is used. Let A = 0.06 and e = 0.0012 ml / (cell.cm). Find the cell concentration of the sample.

1 1555

HEAT TRANSFER - EXAMPLE 5.3 : In a cylinder with a hollow, let a is outside radius and b is the inside radius. In a steady state temperature distribution with no heat generation, the differential equation is (d / dr) (r dT / dr) = 0 where r is for radius and T is for temperature. (a) Integrate the heat equation above into T(r) in term of r. (b) At r = a, T = c; at r = b, T = d. Find the heat equation of T(r) in term of r, a, b, c, d.

1 1667

Question 91 - In the application of Theory of Spectrometry in spectrophotometer, let n = N x C x V, V = A x t, e = a x N where n = number of molecules, N = Avogadro's number, V = volume of cuvette, A = area of cuvette, t = thickness of cuvette, C = concentration of fluid in the cuvette, e = extinction coefficient, a = effective area of molecule. (a) By using calculus in dI = -I x a x N x C x dt, prove that ln (I / Io) = -a x N x C x t, where dI is the small difference in I and dt is the small difference in t. I = intensity of light. Io = initial intensity of light. (b) Show by calculations that ln (Io / I) = e x C x t based on the answer in the previous question (a). (c) Find the equation of log (Io / I) as a function of e, C and t based on the answer in the previous question (b).

1 1620

ENGINEERING ECONOMY - EXAMPLE 7.2 : In the purchase of a machine with a period n = 8.5 years, the minimum attractive rate of return, i = 12 %, the cost P = $55000, F = $4000 is the salvage, annual maintenance A = $3500. The return of the investment or equivalent uniform annual benefit is $15000. The equivalent uniform annual cost is P (A / P, i, n) + A - F (A / F, i, n). The investment is considered acceptable only when equivalent uniform annual benefit is greater than the equivalent uniform annual cost. From the compound interest table, (A / P, i = 12 %, n = 8 years) = 0.2013, (A / P, i = 12 %, n = 9 years) = 0.1877, (A / F, i = 12 %, n = 8 years) = 0.0813, (A / F, i = 12 %, n = 9 years) = 0.0677. Prove by calculations whether the investment above is acceptable.

1 1983


Post New Chemical Engineering Questions

Un-Answered Questions { Chemical Engineering }

Explain what types of valves are recommended for slurry services?

530


What are the assumptions made for kynch theory?

630


How instrument air is continually supplied in process plant?

668


Explain what are the assumptions made on conservation equation?

680


What is minimum flow required of NG having BTU value of 920 btu/scf for flame stability of LBTU gas of BTU value 220 BTU/SCF against the flow 80KPPH.

1850






How much waterproofing compound in one Sqm Plastering (thick.12mm)

1339


X is strong but has a very low density (1% of traditional earth materials.) and hence light weight. It is a recyclable material. The compression behaviour of X is strain rate dependent. Higher strain rates result in higher initial modulus and higher compression strength. It can also withstand unlimited number of cycling loading provided the repetitive loads are kept below 80% of the compressive strength. The internal structure of the material includes air-traps which make it poor heat conductor. X is non- biodegradable and chemically inert in both soil and water. Most acids and their water solutions do not attack it; however strong oxidizing acids do. Solvents which attack X include esters, ketones, ethers, aromatic and aliphatic hydrocarbons and their emulsions, among others. It does not support bacterial/fungal growth as well .It also has significant acoustic properties and effectively reduces the transmission of airborne sound. X is combustible and should not be exposed to open flame or other ignition sources. Combustion products are carbon monoxide, carbon dioxide, water and soot. Long-term exposure to sunlight causes yellowing and a slight embrittlement of the surface due to ultraviolet light. X is able to withstand the rigours of temperature cycling, assuring long-term performance.

1499


What is the maximum recommended velocity for steam in a plant pipe network?

697


Is there any way to remove residual product left in pipes after a batch operation?

622


what is load and what are the types of load?

1598


How can metals be removed from aqueous waste streams?

568


could any one plzz give me the placement tech papers taken by iocl,and bpcl in chemical stream..... my id is.... mishra.gaurang@gmail.com

1739


Can asphalt be recycled to form a useful product?

606


Why whenever a reciprocating compressor is switched ON or OFF it is put into unloading mode?

1546


What are some guidelines for designing for liquid and gas velocities in process plant piping?

621