Chemical Engineering Interview Questions
Questions Answers Views Company eMail

Question 102 - (a) As an approximation, let v = Zc / 137 where v is the radial velocity for 1 s electron of an element, c is the speed of light, Z is the atomic number. For gold with Z = 79, find the radial velocity of its 1 s electron, in term of c and percentage of the speed of light. (b) As an approximation, let A x A = 1 - Z x Z / 18769 where A is the ratio of the relativistic and non-relativistic Bohr radius. Find the value of A.

1 2198

THERMODYNAMIC - EXAMPLE 10.1 : The water is superheated steam at 440 degree Celsius and 17.32 megapascals. Estimate the enthalpy of the steam above. From the steam table for water at 440 degree Celsius, enthalpy of steam, h at 18 megapascals is 3103.7 kilojoules per kilogram and at 16 megapascal is 3062.8 kilojoules per kilogram. Assume that h = mP + c where P is pressure; m and c are constants at fixed temperature with small differences in P.

1 1594

THERMODYNAMIC - EXAMPLE 10.2 : A cylinder with a movable piston contains 0.1 mole of a monoatomic ideal gas. The piston moves through state a, b and c. The heat Q, changes from state c to a is + 685 J. The work W, changes from state c to a is - 120 J. The work, W performed from state a to b then to c is 75 J. By using the first law of thermodynamic, U = Q + W where U is the internal energy : (a) Determine the change in internal energy between states a and c. (b) Is heat added or removed from the gas when the gas is taken along the path abc? (c) Calculate the heat added or removed when the gas is taken along the path abc?

1 1738

THERMODYNAMIC - EXAMPLE 10.3 : According to Raoult's law, the pressure when vapor is completely condensed, P = x(1) P(1) + x(2) P(2) ... + x(n) P(n) when x(1), x(2) ... x(n) are the mole fractions of component 1, 2 ... n and P(1), P(2) ... P(n) are the vapor pressures of component 1, 2 ... n. A vapor at 74 degree Celsius containing 70 mole % water and 30 mole % ethanol is to be completely condensed. At the temperature of 74 degree Celsius vapor pressure is 0.38 atm for water and 0.97 atm for ethanol. What is the minimum pressure the compressor must be operated?

1 1525

CHEMICAL ENERGY BALANCE - EXAMPLE 11.1 : Please match the term A - E with the stated definition i - v. Terms : A. Yield. B. Selectivity. C. Relative saturation. D. Molal saturation. E. Absolute saturation. Definitions : i. (moles of desired product formed) / (moles that would have been formed if there were no side reactions and the limiting reactant has reacted completely); ii. (moles of desired product formed) / (moles of undesired product formed); iii. (relative humidity 40 % means partial pressure of water vapour equals 4 / 10 of the vapour pressure of water at the system temperature); iv. (moles of vapour) / (moles of vapour dry gas); v. (mass of vapour) / (mass of dry gas).

1 1459

CHEMICAL ENERGY BALANCE - EXAMPLE 11.2 : Calculate the cooling duty, H required to condense and cool acetone from 100 degree Celsius to 25 degree Celsius at atmospheric pressure. The heat of vaporization for acetone at its normal boiling point is 30.2 kJ / mol. The boiling point of acetone at atmospheric pressure is 56 degree Celsius. The flowrate of acetone through the condenser is 100 mol / s = N. Value of sensible heat needed to increase the temperature of acetone in liquid form from 25 to 56 degree Celsius is 4.06 kJ / mol. Value of sensible heat needed to increase the temperature of acetone in vapor form from 56 to 100 degree Celsius is 3.82 kJ / mol. Unit of H is kJ / s.

1 1602

CHEMICAL ENERGY BALANCE - EXAMPLE 11.3 : For liquid benzene, the CP constants are : a = 129440, b = - 169.5, c = 0.64781. Reference temperature is 298 K. The temperature of benzene is 60 degree Celsius. Calculate the enthalpy of benzene by using the formula H = a (DT) + (b/2) (T^2 - TREF^2) + (c/3) (T^3 - TREF^3) where ^ is power, DT is temperature difference with TREF = 298 K. H is in J / kmol. DT = T - TREF.

1 2233

Question 103 - (a) Let | - > = 1 | x > + 0 | y >, | | > = 0 | x > + 1 | y >. Find the value of 2 | x > + 3 | y > in term of | - > and | | >. (b) Let m to be the reduced mass. Find the value of m in term of Ma and Mb where 1 / m = 1 / Ma + 1 / Mb.

1 1771

CHEMICAL ENERGY BALANCE - EXAMPLE 11.4 : Calculate the bubble temperature T at P = 85-kPa for a binary liquid with x(1) = 0.4. The liquid solution is ideal. The saturation pressures are Psat(1) = exp [ 14.3 - 2945 / (T + 224) ], Psat(2) = exp [ 14.2 - 2943 / (T + 209) ] where T is in degree Celsius. Please take note that x(1) + x(2) = 1. Please take note that y(1) + y(2) = 1, y(1) = [ x(1) * Psat(1) ] / P, y(2) = [ x(2) * Psat(2) ] / P, * is multiplication. P is in kPa.

1 1474

CHEMICAL ENERGY BALANCE - EXAMPLE 11.5 : According to Margules Equation, P = x(1) p(1) g(1) + x(2) p(2) g(2) for a two-component mixture where P is bubble pressure, x is mole fraction, p is saturation pressure, g is constant given by ln g(1) = x(2) A x(2). Find the value of A as a constant when P = 1.08 bar, p(1) = 0.82 bar, p(2) = 1.93 bar in a 50 : 50 mole fraction mixture. Estimate the pressure required to completely liquefy the 30 : 70 mixture using the same equation, by proving P = 1.39 bar. Take note that ln g(2) = x(1) A x(1), ln g(1) = x(2) A x(2).

1 1656

ENGINEERING MATERIAL - EXAMPLE 12.1 : In crystal material, hexagonal crystal system could form 4-digit index in certain direction of solid. For [1(-1)0] direction in the hexagonal crystal systems of particular catalyst applied in fume removal of incinerator, what is the four-digit index for this direction? Hint : The transformation equations between the 3-digit [h'k'l'] and the 4-digit [hkil] indices are : h = (1/3) (2h'-k'); i = - (h + k); k = (1/3) (2k'-h'); l = l' A. [(-1)100] B. [1(-1)00] C. [(-1)000] D. [00(-1)(-1)] E. [(-1)0(-1)0]

1 1572

ENGINEERING MATERIAL - EXAMPLE 12.2 : At 150 degree Celsius, a mixture of 40 wt % Sn and 60 wt % Pb present, forming phases of alpha and beta. Chemical composition of Sn at each phase : CO (overall) : 40 %, CA (alpha) : 11 %, CB (beta) : 99 %. (a) State 2 reasons for the existences of alpha and beta phases for the mixture of Sn - Pb at 150 degree Celsius. (b) By using Lever Rule, calculate the weight fraction of each phase for alpha, WA = Q / (P + Q) and beta, WB = P / (P + Q) where Q = CB - CO and P = CO - CA.

1 1679

ENGINEERING MATERIAL - EXAMPLE 12.3 : Let a ^ 2 = a x a and a ^ 3 = a x a x a where ^ is power function. Niobium is a metal with a body-centered cubic structure. The length of the unit cell structure is b = 0.3349 nm. (a) Find the volume for a unit cell structure for niobium. (b) There are 2 atoms per unit cell structure of niobium. The metal has a molar mass of 92.9 g / mol. One mole of the metal consists of 6.02 x 10 ^ 23 atoms. Find the mass of niobium per unit cell and the density of niobium.

1 1544

REACTION ENGINEERING - EXAMPLE 13.1 : In a furnace, 2 chemical reactions are happening - 1 mole of solid carbon reacts with 1 mole of oxygen gas to generate 1 mole of carbon dioxide gas; 1 mole of solid carbon reacts with 0.5 mole of oxygen gas to generate 1 mole of carbon monoxide gas. In a given process, 100 kmol of carbon is burned in a furnace. (a) Calculate the theoretical oxygen gas needed by assuming that all the carbon is burned completely to carbon dioxide gas. (b) Calculate the theoretical air needed by assuming that all the carbon is burned completely to carbon dioxide gas and there is only 21 % of oxygen gas. (c) Determine the amount of air required (in kmol) if 50 % excess oxygen gas must be satisfied for (a) and (b). (d) It has latter been found that 20 % of the carbon undergoes incomplete combustion resulting to carbon monoxide gas production. The rest of the carbon undergoes complete combustion. Calculate the total oxygen gas required stoichiometrically based on the actual process.

1 1958

REACTION ENGINEERING - EXAMPLE 13.2 : A batch reactor is designed for the system of the irreversible, elementary liquid-phase hydration of butylene oxide that produces butylene glycol. At the reaction temperature T = 323 K, the reaction rate constant is k = 0.00083 L / (mol - min). The initial concentration of butylene oxide is 0.25 mol / L = Ca. The reaction is conducted using water as the solvent, so that water is in large excess. (a) Let the molecular weight of water is 18 g / mol and the mass of 1 kg in 1 L of water, calculate the molar density of water, Cb in the unit of mol / L. (b) Determine the final conversion, X of butylene oxide in the batch reactor after t = 45 min of reaction time. Use the formula X = 1 - 1 / exp [ kt (Cb) ] derived from material balance. (c) Find the equation of t as a function of X.

1 1516


Post New Chemical Engineering Questions

Un-Answered Questions { Chemical Engineering }

i am appearing in railway section engg. exam of chemical eng. therefore i want previous papers and study material of chemical eng.

1490


How can I treat a waste stream containing both hexavalent chromium and arsenic?

601


Explain some of the consequences of an undersized kettle type reboiler?

659


What is an additive?

621


How i can calculate heat transfer in reactor at unsteady state and what data should i have? I want equation and process to calculate it? As there is steam or brine in jacket

1851






What does the catalystic converter on an automobile really do?

637


What information is needed to specify a mixer?

586


Explain what type of flow measurement devices is best for slurries?

570


What is a quick way to calculate frictional pressure drops in carbon steel pipe?

579


hai....i am chandrika. if anybody having test questions for HAL,HPCL,ONGC,IOL...PLS SEND THE QUES WITH SOLVED ANSWERS TO ME TO MY MAIL ID chandrismiles@yahoo.co.uk

1753


I want previous year question paper of ONGC for chemical engg.

1764


i have done B.TECH in che.tech.and doing MBA . why you doing mba why u have not join any job.

1835


Are some heat transfer services more prone to tube vibration that others for a shell and tube exchanger?

654


my qualification is b.tech- industrial biotech. i was read about many chemical engineering subject as a allied like unit operation, chemical thermodynamics, chemical reaction engineering , mass transfer and separation, downstream processing and principle of chemical engineering. and i have 2 yrs working exprience on in the field of instrumentation and control... and my query is "can i able work as process technologist" and which subject i want conc. more?........

1723


What is a good method of minimizing shell side pressure drop in a shell and tube exchanger?

652