What is simple artificial neuron?
No Answer is Posted For this Question
Be the First to Post Answer
A 4-input neuron has weights 1, 2, 3 and 4. The transfer function is linear with the constant of proportionality being equal to 2. The inputs are 4, 10, 5 and 20 respectively. The output will be: a) 238 b) 76 c) 119 d) 123
Which of the following is true for neural networks? (i) The training time depends on the size of the network. (ii) Neural networks can be simulated on a conventional computer. (iii) Artificial neurons are identical in operation to biological ones. a) All of the mentioned b) (ii) is true c) (i) and (ii) are true d) None of the mentioned
I need a MATLAB source code to recognize different regular geometric shapes such as: squares,rectangles,triangles,circles and ellipses in different sizes using neural network. All of the images containing these shapes should be in binary format with the size of 300*400 pixels. would you please give me a MATLAB code to detect these geometric shapes?
What is the advantage of pooling layer in convolutional neural networks?
what are some advantages and disadvantages of neural network?
How artificial neural networks can be applied in future?
What are batch, incremental, on-line, off-line, deterministic, stochastic, adaptive, instantaneous, pattern, constructive, and sequential learning?
An auto-associative network is: a) a neural network that contains no loops b) a neural network that contains feedback c) a neural network that has only one loop d) a single layer feed-forward neural network with pre-processing
Which of the following is true? Single layer associative neural networks do not have the ability to: (i) perform pattern recognition (ii) find the parity of a picture (iii)determine whether two or more shapes in a picture are connected or not a) (ii) and (iii) are true b) (ii) is true c) All of the mentioned d) None of the mentioned
What can you do with an nn and what not?
What is backprop?
Having multiple perceptrons can actually solve the XOR problem satisfactorily: this is because each perceptron can partition off a linear part of the space itself, and they can then combine their results. a) True – this works always, and these multiple perceptrons learn to classify even complex problems. b) False – perceptrons are mathematically incapable of solving linearly inseparable functions, no matter what you do c) True – perceptrons can do this but are unable to learn to do it – they have to be explicitly hand-coded d) False – just having a single perceptron is enough
AI Algorithms (74)
AI Natural Language Processing (96)
AI Knowledge Representation Reasoning (12)
AI Robotics (183)
AI Computer Vision (13)
AI Neural Networks (66)
AI Fuzzy Logic (31)
AI Games (8)
AI Languages (141)
AI Tools (11)
AI Machine Learning (659)
Data Science (671)
Data Mining (120)
AI Deep Learning (111)
Generative AI (153)
AI Frameworks Libraries (197)
AI Ethics Safety (100)
AI Applications (427)
AI General (197)
AI AllOther (6)