How are artificial neural networks different from normal computers?
No Answer is Posted For this Question
Be the First to Post Answer
Explain neural networks?
What is simple artificial neuron?
A perceptron adds up all the weighted inputs it receives, and if it exceeds a certain value, it outputs a 1, otherwise it just outputs a 0. a) True b) False c) Sometimes – it can also output intermediate values as well d) Can’t say
What is the role of activation functions in a Neural Network?
Having multiple perceptrons can actually solve the XOR problem satisfactorily: this is because each perceptron can partition off a linear part of the space itself, and they can then combine their results. a) True – this works always, and these multiple perceptrons learn to classify even complex problems. b) False – perceptrons are mathematically incapable of solving linearly inseparable functions, no matter what you do c) True – perceptrons can do this but are unable to learn to do it – they have to be explicitly hand-coded d) False – just having a single perceptron is enough
Which of the following is an application of NN (Neural Network)? a) Sales forecasting b) Data validation c) Risk management d) All of the mentioned
Why is the XOR problem exceptionally interesting to neural network researchers? a) Because it can be expressed in a way that allows you to use a neural network b) Because it is complex binary operation that cannot be solved using neural networks c) Because it can be solved by a single layer perceptron d) Because it is the simplest linearly inseparable problem that exists.
How artificial neural networks can be applied in future?
Neuro software is: a) A software used to analyze neurons b) It is powerful and easy neural network c) Designed to aid experts in real world d) It is software used by Neuro surgeon
2 Answers Bihar State Power Holding Company Limited BSPHCL,
List some commercial practical applications of artificial neural networks?
What is back propagation? a) It is another name given to the curvy function in the perceptron b) It is the transmission of error back through the network to adjust the inputs c) It is the transmission of error back through the network to allow weights to be adjusted so that the network can learn. d) None of the mentioned
Neural Networks are complex ______________ with many parameters. a) Linear Functions b) Nonlinear Functions c) Discrete Functions d) Exponential Functions
AI Algorithms (74)
AI Natural Language Processing (96)
AI Knowledge Representation Reasoning (12)
AI Robotics (183)
AI Computer Vision (13)
AI Neural Networks (66)
AI Fuzzy Logic (31)
AI Games (8)
AI Languages (141)
AI Tools (11)
AI Machine Learning (659)
Data Science (671)
Data Mining (120)
AI Deep Learning (111)
Generative AI (153)
AI Frameworks Libraries (197)
AI Ethics Safety (100)
AI Applications (427)
AI General (197)
AI AllOther (6)