AI Algorithms (74)
AI Natural Language Processing (96)
AI Knowledge Representation Reasoning (12)
AI Robotics (183)
AI Computer Vision (13)
AI Neural Networks (66)
AI Fuzzy Logic (31)
AI Games (8)
AI Languages (141)
AI Tools (11)
AI Machine Learning (659)
Data Science (671)
Data Mining (120)
AI Deep Learning (111)
Generative AI (153)
AI Frameworks Libraries (197)
AI Ethics Safety (100)
AI Applications (427)
AI General (197)
AI AllOther (6) What does the Bayesian network provides? a) Complete description of the domain b) Partial description of the domain c) Complete description of the problem d) None of the mentioned
1 7958Fuzzy logic is usually represented as a) IF-THEN-ELSE rules b) IF-THEN rules c) Both a & b d) None of the mentioned
1 7189______________ is/are the way/s to represent uncertainty. a) Fuzzy Logic b) Probability c) Entropy d) All of the mentioned
4680____________ are algorithms that learn from their more complex environments (hence eco) to generalize, approximate and simplify solution logic. a) Fuzzy Relational DB b) Ecorithms c) Fuzzy Set d) None of the mentioned
3918Which condition is used to influence a variable directly by all the others? a) Partially connected b) Fully connected c) Local connected d) None of the mentioned
2226What is the consequence between a node and its predecessors while creating Bayesian network? a) Conditionally dependent b) Dependent c) Conditionally independent d) Both a & b
3011A 3-input neuron is trained to output a zero when the input is 110 and a one when the input is 111. After generalization, the output will be zero when and only when the input is: a) 000 or 110 or 011 or 101 b) 010 or 100 or 110 or 101 c) 000 or 010 or 110 or 100 d) 100 or 111 or 101 or 001
HCL,
1 8446A perceptron is: a) a single layer feed-forward neural network with pre-processing b) an auto-associative neural network c) a double layer auto-associative neural network d) a neural network that contains feedback
1 11086An auto-associative network is: a) a neural network that contains no loops b) a neural network that contains feedback c) a neural network that has only one loop d) a single layer feed-forward neural network with pre-processing
1 18156A 4-input neuron has weights 1, 2, 3 and 4. The transfer function is linear with the constant of proportionality being equal to 2. The inputs are 4, 10, 5 and 20 respectively. The output will be: a) 238 b) 76 c) 119 d) 123
1 11185Which of the following is true? (i) On average, neural networks have higher computational rates than conventional computers. (ii) Neural networks learn by example. (iii) Neural networks mimic the way the human brain works. a) All of the mentioned are true b) (ii) and (iii) are true c) (i), (ii) and (iii) are true d) None of the mentioned
1 5950Which of the following is true for neural networks? (i) The training time depends on the size of the network. (ii) Neural networks can be simulated on a conventional computer. (iii) Artificial neurons are identical in operation to biological ones. a) All of the mentioned b) (ii) is true c) (i) and (ii) are true d) None of the mentioned
1 15980What are the advantages of neural networks over conventional computers? (i) They have the ability to learn by example (ii) They are more fault tolerant (iii)They are more suited for real time operation due to their high ‘computational’ rates a) (i) and (ii) are true b) (i) and (iii) are true c) Only (i) d) All of the mentioned
1 12706Which of the following is true? Single layer associative neural networks do not have the ability to: (i) perform pattern recognition (ii) find the parity of a picture (iii)determine whether two or more shapes in a picture are connected or not a) (ii) and (iii) are true b) (ii) is true c) All of the mentioned d) None of the mentioned
1 7229
Where do you think AI will have the most significant impact?
What would you do to summarize a Twitter feed?
What is the main difference between a Pandas series and a single-column DataFrame in Python?
What kind of problems does regularization solve?
Write an algorithm to traverse a knight covering all the squares on a chessboard starting at a particular point.
What are the limitations of current Generative AI models?
What are some ethical considerations of generative AI?
Explain the issues regarding classification and prediction?
Explain the difference between bias and variance?
What is motor sequence learning?
What is bidirectional search algorithm?
Differentiate between a parameter and a hyperparameter?
What are the components of a robot?
Explain how AI models predict stock market trends.
Explain what are different stages of 'data mining”?