Insights of a 2 input NOR gate. Explain the working?
Answer Posted / suma
For NOR
Output will be high when both AB are low
Otherwise output is low for other input condition's
| Is This Answer Correct ? | 0 Yes | 0 No |
Post New Answer View All Answers
What is the ideal input and output resistance of a current source?
In a SRAM layout, which metal layers would you prefer for Word Lines and Bit Lines? Why?
What happens if we use an Inverter instead of the Differential Sense Amplifier?
Write a VLSI program that implements a toll booth controller?
Need to convert this VHDL code into VLSI verilog code? LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; ----using all functions of specific package--- ENTITY tollbooth2 IS PORT (Clock,car_s,RE : IN STD_LOGIC; coin_s : IN STD_LOGIC_VECTOR(1 DOWNTO 0); r_light,g_light,alarm : OUT STD_LOGIC); END tollbooth2; ARCHITECTURE Behav OF tollbooth2 IS TYPE state_type IS (NO_CAR,GOTZERO,GOTFIV,GOTTEN,GOTFIF,GOTTWEN,CAR_PAID,CHEATE D); ------GOTZERO = PAID $0.00--------- ------GOTFIV = PAID $0.05---------- ------GOTTEN = PAID $0.10---------- ------GOTFIF = PAID $0.15---------- ------GOTTWEN = PAID $0.20--------- SIGNAL present_state,next_state : state_type; BEGIN -----Next state is identified using present state,car & coin sensors------ PROCESS(present_state,car_s,coin_s) BEGIN CASE present_state IS WHEN NO_CAR => IF (car_s = '1') THEN next_state <= GOTZERO; ELSE next_state <= NO_CAR; END IF; WHEN GOTZERO => IF (car_s ='0') THEN next_state <= CHEATED; ELSIF (coin_s = "00") THEN next_state <= GOTZERO; ELSIF (coin_s = "01") THEN next_state <= GOTFIV; ELSIF (coin_s ="10") THEN next_state <= GOTTEN; END IF; WHEN GOTFIV=> IF (car_s ='0') THEN next_state <= CHEATED; ELSIF (coin_s = "00") THEN next_state <= GOTFIV; ELSIF (coin_s = "01") THEN next_state <= GOTTEN; ELSIF (coin_s <= "10") THEN next_state <= GOTFIV; END IF; WHEN GOTTEN => IF (car_s ='0') THEN next_state <= CHEATED; ELSIF (coin_s ="00") THEN next_state <= GOTTEN; ELSIF (coin_s="01") THEN next_state <= GOTFIV; ELSIF (coin_s="10") THEN next_state <= GOTTWEN; END IF; WHEN GOTFIF => IF (car_s ='0') THEN next_state <= CHEATED; ELSIF (coin_s = "00") THEN next_state <= GOTFIF; ELSIF (coin_s ="01") THEN next_state <= GOTTWEN; ELSIF (coin_s = "10") THEN next_state <= GOTTWEN; END IF; WHEN GOTTWEN => next_state <= CAR_PAID; WHEN CAR_PAID => IF (car_s = '0') THEN next_state <= NO_CAR; ELSE next_state<= CAR_PAID; END IF; WHEN CHEATED => IF (car_s = '1') THEN next_state <= GOTZERO; ELSE next_state <= CHEATED; END IF; END CASE; END PROCESS;-----End of Process 1 -------PROCESS 2 for STATE REGISTER CLOCKING-------- PROCESS(Clock,RE) BEGIN IF RE = '1' THEN present_state <= GOTZERO; ----When the clock changes from low to high,the state of the system ----stored in next_state becomes the present state----- ELSIF Clock'EVENT AND Clock ='1' THEN present_state <= next_state; END IF; END PROCESS;-----End of Process 2------- --------------------------------------------------------- -----Conditional signal assignment statements---------- r_light <= '0' WHEN present_state = CAR_PAID ELSE '1'; g_light <= '1' WHEN present_state = CAR_PAID ELSE '0'; alarm <= '1' WHEN present_state = CHEATED ELSE '0'; END Behav;
Draw a 6-T SRAM Cell and explain the Read and Write operations
What was your role in the silicon evaluation/product ramp? What tools did you use?
What are the different ways in which antenna violation can be prevented?
How about voltage source?
Draw the SRAM Write Circuitry
What transistor level design tools are you proficient with? What types of designs were they used on?
Explain the Working of a 2-stage OPAMP?
Draw the Differential Sense Amplifier and explain its working. Any idea how to size this circuit? (Consider Channel Length Modulation)
Explain how Verilog is different to normal programming language?
Calculate rise delay of a 3-input NAND gate driving a 3-input NOR gate through a 6mm long and 0.45m wide metal wire with sheet resistance R = 0.065 / and Cpermicron= 0.25 fF/m. The resistance and capacitance of the unit NMOS are 6.5k and 2.5fF. Use a 3 segment -model for the wire. Consider PMOS and NMOS size of reference inverter as 2 and 1 respectively. Use appropriate sizing for the NAND and NOR gate.