Give the various techniques you know to minimize power
consumption?
Answer Posted / narayanachowdary
clock gating
multiple thresholdvoltages,
logic restructuring,....
| Is This Answer Correct ? | 2 Yes | 0 No |
Post New Answer View All Answers
Process technology? What package was used and how did you model the package/system? What parasitic effects were considered?
what is the difference between the TTL chips and CMOS chips?
why is the number of gate inputs to CMOS gates usually limited to four?
Explain depletion region.
Mention what are the two types of procedural blocks in Verilog?
Explain what is multiplexer?
what are three regions of operation of MOSFET and how are they used?
Need to convert this VHDL code into VLSI verilog code? LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; ----using all functions of specific package--- ENTITY tollbooth2 IS PORT (Clock,car_s,RE : IN STD_LOGIC; coin_s : IN STD_LOGIC_VECTOR(1 DOWNTO 0); r_light,g_light,alarm : OUT STD_LOGIC); END tollbooth2; ARCHITECTURE Behav OF tollbooth2 IS TYPE state_type IS (NO_CAR,GOTZERO,GOTFIV,GOTTEN,GOTFIF,GOTTWEN,CAR_PAID,CHEATE D); ------GOTZERO = PAID $0.00--------- ------GOTFIV = PAID $0.05---------- ------GOTTEN = PAID $0.10---------- ------GOTFIF = PAID $0.15---------- ------GOTTWEN = PAID $0.20--------- SIGNAL present_state,next_state : state_type; BEGIN -----Next state is identified using present state,car & coin sensors------ PROCESS(present_state,car_s,coin_s) BEGIN CASE present_state IS WHEN NO_CAR => IF (car_s = '1') THEN next_state <= GOTZERO; ELSE next_state <= NO_CAR; END IF; WHEN GOTZERO => IF (car_s ='0') THEN next_state <= CHEATED; ELSIF (coin_s = "00") THEN next_state <= GOTZERO; ELSIF (coin_s = "01") THEN next_state <= GOTFIV; ELSIF (coin_s ="10") THEN next_state <= GOTTEN; END IF; WHEN GOTFIV=> IF (car_s ='0') THEN next_state <= CHEATED; ELSIF (coin_s = "00") THEN next_state <= GOTFIV; ELSIF (coin_s = "01") THEN next_state <= GOTTEN; ELSIF (coin_s <= "10") THEN next_state <= GOTFIV; END IF; WHEN GOTTEN => IF (car_s ='0') THEN next_state <= CHEATED; ELSIF (coin_s ="00") THEN next_state <= GOTTEN; ELSIF (coin_s="01") THEN next_state <= GOTFIV; ELSIF (coin_s="10") THEN next_state <= GOTTWEN; END IF; WHEN GOTFIF => IF (car_s ='0') THEN next_state <= CHEATED; ELSIF (coin_s = "00") THEN next_state <= GOTFIF; ELSIF (coin_s ="01") THEN next_state <= GOTTWEN; ELSIF (coin_s = "10") THEN next_state <= GOTTWEN; END IF; WHEN GOTTWEN => next_state <= CAR_PAID; WHEN CAR_PAID => IF (car_s = '0') THEN next_state <= NO_CAR; ELSE next_state<= CAR_PAID; END IF; WHEN CHEATED => IF (car_s = '1') THEN next_state <= GOTZERO; ELSE next_state <= CHEATED; END IF; END CASE; END PROCESS;-----End of Process 1 -------PROCESS 2 for STATE REGISTER CLOCKING-------- PROCESS(Clock,RE) BEGIN IF RE = '1' THEN present_state <= GOTZERO; ----When the clock changes from low to high,the state of the system ----stored in next_state becomes the present state----- ELSIF Clock'EVENT AND Clock ='1' THEN present_state <= next_state; END IF; END PROCESS;-----End of Process 2------- --------------------------------------------------------- -----Conditional signal assignment statements---------- r_light <= '0' WHEN present_state = CAR_PAID ELSE '1'; g_light <= '1' WHEN present_state = CAR_PAID ELSE '0'; alarm <= '1' WHEN present_state = CHEATED ELSE '0'; END Behav;
Draw the Layout of an Inverter?
What is the purpose of having depletion mode device?
What are the various regions of operation of mosfet? How are those regions used?
Explain Cross section of an NMOS transistor?
What types of I/O have you designed? What were their size? Speed? Configuration? Voltage requirements?
what is the use of defpararm?
Explain Process technology? What package was used and how did you model the package/system? What parasitic effects were considered?