If the substrate doping concentration increase, or
temperature increases, how will Vt change? it increase or
decrease?
Answer Posted / arjun_r
If the Substrate doping concentration is increased, the number of randomly moving electrons that need to be aligned are increased which means threshold voltage is increased.
And the threshold voltage decreases with increase in temperature.
Is This Answer Correct ? | 0 Yes | 0 No |
Post New Answer View All Answers
What is the purpose of having depletion mode device?
Need to convert this VHDL code into VLSI verilog code? LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; ----using all functions of specific package--- ENTITY tollbooth2 IS PORT (Clock,car_s,RE : IN STD_LOGIC; coin_s : IN STD_LOGIC_VECTOR(1 DOWNTO 0); r_light,g_light,alarm : OUT STD_LOGIC); END tollbooth2; ARCHITECTURE Behav OF tollbooth2 IS TYPE state_type IS (NO_CAR,GOTZERO,GOTFIV,GOTTEN,GOTFIF,GOTTWEN,CAR_PAID,CHEATE D); ------GOTZERO = PAID $0.00--------- ------GOTFIV = PAID $0.05---------- ------GOTTEN = PAID $0.10---------- ------GOTFIF = PAID $0.15---------- ------GOTTWEN = PAID $0.20--------- SIGNAL present_state,next_state : state_type; BEGIN -----Next state is identified using present state,car & coin sensors------ PROCESS(present_state,car_s,coin_s) BEGIN CASE present_state IS WHEN NO_CAR => IF (car_s = '1') THEN next_state <= GOTZERO; ELSE next_state <= NO_CAR; END IF; WHEN GOTZERO => IF (car_s ='0') THEN next_state <= CHEATED; ELSIF (coin_s = "00") THEN next_state <= GOTZERO; ELSIF (coin_s = "01") THEN next_state <= GOTFIV; ELSIF (coin_s ="10") THEN next_state <= GOTTEN; END IF; WHEN GOTFIV=> IF (car_s ='0') THEN next_state <= CHEATED; ELSIF (coin_s = "00") THEN next_state <= GOTFIV; ELSIF (coin_s = "01") THEN next_state <= GOTTEN; ELSIF (coin_s <= "10") THEN next_state <= GOTFIV; END IF; WHEN GOTTEN => IF (car_s ='0') THEN next_state <= CHEATED; ELSIF (coin_s ="00") THEN next_state <= GOTTEN; ELSIF (coin_s="01") THEN next_state <= GOTFIV; ELSIF (coin_s="10") THEN next_state <= GOTTWEN; END IF; WHEN GOTFIF => IF (car_s ='0') THEN next_state <= CHEATED; ELSIF (coin_s = "00") THEN next_state <= GOTFIF; ELSIF (coin_s ="01") THEN next_state <= GOTTWEN; ELSIF (coin_s = "10") THEN next_state <= GOTTWEN; END IF; WHEN GOTTWEN => next_state <= CAR_PAID; WHEN CAR_PAID => IF (car_s = '0') THEN next_state <= NO_CAR; ELSE next_state<= CAR_PAID; END IF; WHEN CHEATED => IF (car_s = '1') THEN next_state <= GOTZERO; ELSE next_state <= CHEATED; END IF; END CASE; END PROCESS;-----End of Process 1 -------PROCESS 2 for STATE REGISTER CLOCKING-------- PROCESS(Clock,RE) BEGIN IF RE = '1' THEN present_state <= GOTZERO; ----When the clock changes from low to high,the state of the system ----stored in next_state becomes the present state----- ELSIF Clock'EVENT AND Clock ='1' THEN present_state <= next_state; END IF; END PROCESS;-----End of Process 2------- --------------------------------------------------------- -----Conditional signal assignment statements---------- r_light <= '0' WHEN present_state = CAR_PAID ELSE '1'; g_light <= '1' WHEN present_state = CAR_PAID ELSE '0'; alarm <= '1' WHEN present_state = CHEATED ELSE '0'; END Behav;
Explain the working of Insights of an inverter ?
Calculate rise delay of a 3-input NAND gate driving a 3-input NOR gate through a 6mm long and 0.45m wide metal wire with sheet resistance R = 0.065 / and Cpermicron= 0.25 fF/m. The resistance and capacitance of the unit NMOS are 6.5k and 2.5fF. Use a 3 segment -model for the wire. Consider PMOS and NMOS size of reference inverter as 2 and 1 respectively. Use appropriate sizing for the NAND and NOR gate.
What are the different design techniques required to create a layout for digital circuits?
What was your role in the silicon evaluation or product ramp? What tools did you use?
What is Charge Sharing? Explain the Charge Sharing problem while sampling data from a Bus
How to improve these parameters? (Cascode topology, use long channel transistors)
What's the price in 1K quantity?
What is the function of enhancement mode transistor?
What is Latch Up? Explain Latch Up with cross section of a CMOS Inverter. How do you avoid Latch Up?
What does the above code synthesize to?
How does a Bandgap Voltage reference work?
For f = AB+CD if B is S-a-1, what are the test vectors needed to detect the fault?
What types of high speed CMOS circuits have you designed?