Answer Posted / naveen
As Anup asked, My doubt is suppose your code reside in the
memory location 9AB0 H. You initially switched on the micro
processor, Now what is the value in PC? Is it 0000H if not
what is that address? And why that address? how to load the
address where I wrote the code?
2) If during the execution of the Code we gave a Reset to
8085 where does the execution Jumps to? Does the program
return back to its normal execution after reset?
| Is This Answer Correct ? | 8 Yes | 3 No |
Post New Answer View All Answers
What is the function of ale in 8085 microprocessor?
I have code and test bench however it is not working porperly. Need help to get it working. module fsm(clock,reset,coin,vend,state,change); \\these are the inputs and the outputs. input clock; input reset; input [2:0]coin; output vend; output [2:0]state; output [2:0]change; \\i need to define the registers as change,coin and vend reg vend; reg [2:0]change; wire [2:0]coin; \\my coins are declared as parameters to make reading better. parameter [2:0]NICKEL=3’b001; parameter [2:0]DIME=3’b010; parameter [2:0]NICKEL_DIME=3’b011; parameter [2:0]DIME_DIME=3’b100; parameter [2:0]QUARTER=3’b101; \\MY STATES ARE ALSO PARAMETERS . I DONT WANT TO MAKE YOU READ \\IN MACHINE LANGUAGE parameter [2:0]IDLE=3’b000; parameter [2:0]FIVE=3’b001; parameter [2:0]TEN=3’b010; parameter [2:0]FIFTEEN=3’b011; parameter [2:0]TWENTY=3’b100; parameter [2:0]TWENTYFIVE=3’b101; \\AS ALWAYS THE STATES ARE DEFINED AS REG reg [2:0]state,next_state; \\MY MACHINE WORKS ON STATE AND COIN always @(state or coin) begin next_state=0; \\VERYFIRST NEXT STATE IS GIVEN ZERO case(state) IDLE: case(coin) \\THIS IS THE IDLE STATE NICKEL: next_state=FIVE; DIME: next_state=TEN; QUARTER: next_state=TWENTYFIVE; default: next_state=IDLE; endcase FIVE: case(coin) \\THIS IS THE SECOND STATE NICKEL: next_state=TEN; DIME: next_state=FIFTEEN; QUARTER: next_state=TWENTYFIVE; //change=NICKEL default: next_state=FIVE; endcase TEN: case(coin) \\THIS IS THE THIRD STATE NICKEL: next_state=FIFTEEN; DIME: next_state=TWENTY; QUARTER: next_state=TWENTYFIVE; //change=DIME default: next_state=TEN; endcase FIFTEEN: case(coin) \\THIS IS THE FOURTH STATE NICKEL: next_state=TWENTY; DIME: next_state=TWENTYFIVE; QUARTER: next_state=TWENTYFIVE; //change==NICKEL_DIME default: next_state=FIFTEEN; endcase TWENTY: case(coin) \\THIS IS THE FIFTH STATE NICKEL: next_state=TWENTYFIVE; DIME: next_state=TWENTYFIVE; //change=NICKEL QUARTER: next_state=TWENTYFIVE; //change==DIME_DIME default: next_state=TWENTY; endcase TWENTYFIVE: next_state=IDLE; \\THE NEXT STATE HERE IS THE RESET default : next_state=IDLE; endcase end always @(clock) begin \\WHENEVER I GIVE A RESET I HAVE TO MAKE THE STATE TO IDLE AND VEND TO 1 if(reset) begin state <= IDLE; vend <= 1’b0; // change <= 3’b000; end \\THE CHANGE ALSO HAS TO BECOME NONE else state <= next_state; case (state) \\HERE WE DECIDE THE NEXT STATE \\ALL THE STATES ARE DEFINED HERE AND THE OUTPUT IS ALSO GIVEN IDLE: begin vend <= 1’b0; change <=3’d0; end FIVE: begin vend <= 1’b0; if (coin==QUARTER) change <=NICKEL; else change <=3’d0; TEN: begin vend <= 1’b0; if (coin==QUARTER) change <=DIME; else change <= 3’d0; FIFTEEN : begin vend <= 1’b0; if (coin==QUARTER) change <=NICKEL_DIME; else change TWENTY : begin vend <= 1’b0; if (coin==DIME) change <=NICKEL; else if (coin==QUARTER) TWENTYFIVE : begin vend <= 1’b1; change <=3’d0; end default: state <= IDLE; endcase end endmodule module test; \\THE INPUT IN THE FSM MODULE ARE REG HERE reg clock,reset; reg [2:0]coin; \\THE OUTPUT IN THE FSM MODULE ARE WIRES HERE wire vend; wire [2:0]state; wire [2:0]change; \\THE PARAMETERS AGAIN FOR THE COIN AND STATE parameter [2:0]IDLE=3’b000; parameter [2:0]FIVE=3’b001; parameter [2:0]TEN=3’b010; parameter [2:0]FIFTEEN=3’b011; parameter [2:0]TWENTY=3’b100; parameter [2:0]TWENTYFIVE=3’b101; parameter [2:0]NICKEL=3’b001; parameter [2:0]DIME=3’b010; parameter [2:0]NICKEL_DIME=3’b011; parameter [2:0]DIME_DIME=3’b100; parameter [2:0]QUARTER=3’b101; \\I MONITOR THE TIME,DRINK,RESET,CLOCK,STATE AND CHANGE FOR CHANGES. initial begin $display("Time\tcoin\tdrink\treset\tclock\tstate\tchange"); $monitor("%g\t%b\t%b\t%b\t%b\t%d\t% d",$time,coin,vend,reset,clock,state,change); \\NEW FEATURE: MY MACHINE HAS THE FACILITY TO DUMP VARIABLES SO THAT \\ I CAN VIEW THEM USING A VCD VIEWER. $dumpvars; $dumpfile("file.vcd"); // Dump output file. \\THIS IS WHERE THE COINS ARE ADDED. clock=0; reset=1; \\FIRST LETS RESET THE MACHINE #2 reset=0; coin=NICKEL; \\CHECK FOR STATE 1 #2 reset=1; coin=2’b00; #2 reset=0; coin=DIME; \\RESET AGAIN AND CHECK FOR STATE 2 #2 reset=1; coin=2’b00; #2 reset=0; \\RESET AGAIN AND CHECK FOR STATE 5 coin=QUARTER; #2 reset=1; coin=2’b00; #2 reset=0; \\RESET AGAIN AND CHECK FOR STATE 5 coin=NICKEL; #2 coin=NICKEL; #2 coin=NICKEL; #2 coin=NICKEL; #2 coin=NICKEL; #2 reset=1; coin=2’b00; #2 reset=0; \\RESET AGAIN AND CHECK FOR STATE 5 AND SO ON coin=NICKEL; #2 coin=DIME; #2 coin=DIME; #2 reset=1; coin=2’b00; #2 reset=0; coin=NICKEL; #2 coin=DIME; #2 coin=QUARTER; #2 reset=1; coin=2’b00; #2 reset=0; coin=NICKEL; #2 coin=NICKEL; #2 coin=NICKEL; #2 coin=DIME; #2 reset=1; coin=2’b00; #2 reset=0; coin=NICKEL; #2 coin=NICKEL; #2 coin=NICKEL; #2 coin=NICKEL; #2 coin=DIME; #2 reset=1; coin=2’b00; #2 reset=0; coin=NICKEL; #2 coin=NICKEL; #2 coin=QUARTER; #2 reset=1; coin=2’b00; #2 reset=0; coin=NICKEL; #2 coin=QUARTER; #2 reset=1; coin=2’b00; #2 $finish; end \\THE CLOCK NEEDS TO TICK EVERY 2 TIME UNIT always #1 clock=~clock; //always @(state) // coin=!coin; initial begin if (reset) coin=2’b00; end \\THIS IS WHERE I INSTANTIATE THE MACHINE fsm inst1(clock,reset,coin,vend,state,change); endmodule
The operation being performed by the 8085 can be checked by which pins?
Name the special purpose registers?
Give example of bit address and byte address?
explain the difference between 8086 and 8088?
What is segment address in 8086?
What is stack pointer?
State the number and type of registers in the 8086?
what are the advantages of modular proramming techniques
Design a divide-by-3 sequential circuit with 50% duty circle now?
Classify interrupts on the basis of signals. State their differences.
What is internal structure of 8086?
List some 8051 microcontroller applications in embedded systems ?
Which interrupt has the highest priority?