Golgappa.net | Golgappa.org | BagIndia.net | BodyIndia.Com | CabIndia.net | CarsBikes.net | CarsBikes.org | CashIndia.net | ConsumerIndia.net | CookingIndia.net | DataIndia.net | DealIndia.net | EmailIndia.net | FirstTablet.com | FirstTourist.com | ForsaleIndia.net | IndiaBody.Com | IndiaCab.net | IndiaCash.net | IndiaModel.net | KidForum.net | OfficeIndia.net | PaysIndia.com | RestaurantIndia.net | RestaurantsIndia.net | SaleForum.net | SellForum.net | SoldIndia.com | StarIndia.net | TomatoCab.com | TomatoCabs.com | TownIndia.com
Interested to Buy Any Domain ? << Click Here >> for more details...

What are all important modules in python reuired for a data science ?

Answer Posted / praveen

Here's a comprehensive list of essential Python modules for data science:

*Core Modules:*

1. NumPy (np) - Numerical computations
2. Pandas (pd) - Data manipulation and analysis
3. Matplotlib (plt) - Data visualization
4. Scikit-learn (sklearn) - Machine learning
5. SciPy - Scientific computing

*Data Manipulation and Analysis:*

1. Pandas-datareader (web data retrieval)
2. Openpyxl (Excel file handling)
3. CSV, JSON, and XML (data import/export)

*Data Visualization:*

1. Seaborn (visualization based on Matplotlib)
2. Plotly (interactive visualizations)
3. Bokeh (interactive visualizations)
4. Geopandas (geospatial data visualization)

*Machine Learning and Deep Learning:*

1. TensorFlow (tf) - Deep learning
2. Keras - Deep learning
3. PyTorch - Deep learning
4. Scikit-learn (sklearn) - Machine learning
5. LightGBM - Gradient boosting
6. XGBoost - Gradient boosting

*Statistical Analysis:*

1. Statsmodels - Statistical modeling
2. PyMC3 - Bayesian modeling
3. Scipy.stats - Statistical functions

*Data Preprocessing and Feature Engineering:*

1. Scikit-image (image processing)
2. NLTK (natural language processing)
3. SpaCy (natural language processing)
4. Gensim (topic modeling)

*Big Data and Distributed Computing:*

1. Apache Spark - Big data processing
2. Dask - Parallel computing
3. Joblib - Parallel computing

*Other Essential Modules:*

1. IPython - Interactive shell
2. Jupyter Notebook - Interactive coding environment
3. PyCharm, VSCode, or Spyder - IDEs
4. Git - Version control

*Domain-Specific Modules:*

1. Bioinformatics: Biopython, Scikit-bio
2. Finance: Pandas-datareader, Zipline
3. Geospatial: Geopandas, Folium
4. Natural Language Processing: NLTK, SpaCy
5. Computer Vision: OpenCV, Scikit-image

*Tips:*

1. Install modules using pip or conda.
2. Keep your modules up-to-date.
3. Explore documentation and tutorials for each module.
4. Practice using modules on real-world projects.

*Resources:*

1. Python Data Science Handbook (book)
2. DataCamp (online courses)
3. Kaggle (competitions and tutorials)
4. GitHub (open-source projects)

Mastering these modules will provide a solid foundation for data science tasks in Python.

Is This Answer Correct ?    0 Yes 0 No



Post New Answer       View All Answers


Please Help Members By Posting Answers For Below Questions

How to get all keys from dictionary ?

827


What does r in a circle mean?

831


How is unit test done in python?

844


What is numpy? Is it better than a list?

886


How would you convert a string into an int in python?

830


How do you use isalpha in python?

902


What are the different ways to create an empty numpy array in python?

832


Explain about lambda in python?

837


Why is python so slow?

847


Is python supports multithreading?

825


Differentiate between split(), sub(), and subn() methods of the re module?

897


What is the print in python?

789


How do you count loops in python?

1009


How do you convert string as a variable name in python?

949


What is the namespace in python?

859