Golgappa.net | Golgappa.org | BagIndia.net | BodyIndia.Com | CabIndia.net | CarsBikes.net | CarsBikes.org | CashIndia.net | ConsumerIndia.net | CookingIndia.net | DataIndia.net | DealIndia.net | EmailIndia.net | FirstTablet.com | FirstTourist.com | ForsaleIndia.net | IndiaBody.Com | IndiaCab.net | IndiaCash.net | IndiaModel.net | KidForum.net | OfficeIndia.net | PaysIndia.com | RestaurantIndia.net | RestaurantsIndia.net | SaleForum.net | SellForum.net | SoldIndia.com | StarIndia.net | TomatoCab.com | TomatoCabs.com | TownIndia.com
Interested to Buy Any Domain ? << Click Here >> for more details...

how to calculate a id fan capacity and sutable motor in
kw's.i have a fan impeller dia is 1050mm, width is 105mm in
impeller inside to inside,and impeller section cone gap is
450mm, impeller plate thick is 5mm,what is the sutable
motor and how cen i calculate the fan capacity, tell me the
calculations with Exa also.

Answer Posted / jugal pandya

Pressure and temp at 1. Superheater Outlet : 67 Kg/cm2 & 485 C
2. Steam Drum : 73 Kg/cm2 & Saturated
3. Economizer inlet : Water inlet at 105 C

From Steam tables,
Enthalpy of Superheated steam , Hsh = 809 Kcal/ kg = 1456 BTU/lb
Enthalpy of Drum water , Hdwat = 305 Kcal/kg = 549 BTU/lb
Enthalpy of inlet water , Hwat = 105 Kcal/kg = 189 BTU/lb

Assume 3% Blowdown from Boiler.

Total Heat Load of the Boiler = Total heat absorbed by water to convert to steam + heat absorbed to get superheated + Blow down losses
= 50000(809-305) + 50000 x 1.03 x (305-105)
= 35.5e06 Kcal/hr = 140.87e06 BTU/hr

Fuel consumption = Heat Load/ (HHV x Efficiency)
= 35.5e06/ (7278 x 0.8649)
= 5639 Kg/hr = 12428 Lb/hr of coal

From previous article on Combustion and efficiency,
Wet gases = 14.05 and Air = 13.12 kg / kg of coal

Therefore, Exhaust gases produced = Fuel consumption x UnitWetGas
= 5639 x 14.05
= 79,228 Kg/hr of wet gases
Combustion Air required = 5639 x 13.12
= 73,984 Kg/hr of combustion air

Feed Water required = 50,000 x 1.03 : 3% Blowdown
= 51,00 Kg/hr

Sizing Calculations :
a) Boiler feed Water Pumps :

Two pumps of 100 % capacity are required one for working and one for standby.

Each pump discharge capacity minimum= 51500 Kg/hr
= 51500/950 : 950 kg/m3 water density
= 53.8 m3/hr
Margin on discharge capacity : 15- 25 %.
Take 20% margin in this case.

So discharge capacity of each pump : 53.8 x 1.2
= 64.6 m3/hr =say 65 m3/hr

If Recirculation valves are not provided, you need to add min recirculation flow to the above figure, which may be about 6-10 m3/hr depending up on pump type and make.

Pump head required = Drum Pressure + Drum elevation + Piping Losses + Control Valve Loss + Other valve losses

= 75 Kg/cm2 + 2.0 + 2.0 +5.0 +2.0
= 86 Kg/cm2
= 86 x 10/0.95 mts of water head at 105C
= 905 mts of WC

Provide up to 5% margin on head. So final Pump head is 905 x 1.05 = 950 m of WC
So BFW pumps (2 nos) rating is 65 m3/hr at 950 m of WC with feed water at 105 C.

b) Sizing calculations of FD Fan :
Forced Draft Fan is required to pump in primary combustion Air into the Boiler furnace. Air from FD fan passes through Air Heater before entering furnace through Grate. Secondary Air Fan (SA fan) supplies secondary combustion air in to the furnace. Usually primary air is 70 -80 % of the total air and balance is supplied as secondary air through SA fan. Secondary air is supplied at a higher pressure to help fuel spreading on the grate called as pneumatic spreading.

Total combustion Air, Kg/hr = 73,984
= 73994/(1.17 x 3600) m3/s :Air density-1.17kg/m3
= 17.56 m3/s

Primary Air , 70% of total , m3/s = 0.7 x 17.56
= 12.3 m3/s

Take 20% margin on discharge capacity. So FD Fan flow is 1.2 x 12.3 = 14.76 m3/s

Head required = Draft loss across Air Heater + Grate + Ducting & others
= 75 mmWC + 75 + 50 mm : Approximate
= 200 mm WC (approximate)
Take 15-20 % margin on head. So FD fan head should be about 230 mm of WC.

Therefore, FD fan rating is 15 m3/s of air at 230 mm WC static head.

Power requirements of FD Fan :
Let us assume Fan efficiency as 75% and Motor Efficiency as 90%.
Power required for FD Fan, BHP = Flow x Head / ( Efficiency x 75.8 )
= 15 x 230 / ( 0.75 x 75.8 )
= 60.7 HP

Motor HP required = 60.7 / 0.9 = 68 HP
Annual cost of operation assuming 7 cents per KWH and 7200 hrs of operation per annum. 0.74 is factor for converting HP to KW. Pl note that unit Electricity charges vary widely across different countries.

= 68 x 0.74 x 0.07 x 7200
= $ 25, 362 /-

c) Sizing calculations of SA Fan :
Secondary Air Fan (SA fan) supplies secondary combustion air in to the furnace.
Secondary Air , 30% of total , m3/s = 0.3 x 17.56
= 5.27 m3/s

Take 20% margin on discharge capacity. So SA Fan flow is 1.2 x 5.27 = 6.3 m3/s
SA fan static head is about 630 mm WC.
Therefore, SA fan rating is 6.3 m3/s of air at 650 mm WC static head.

Power requirements of SA Fan :
Let us assume Fan efficiency as 70% and Motor Efficiency as 90%.
Power required for FD Fan, BHP = Flow x Head / ( Efficiency x 75.8 )
= 6.3 x 650 / ( 0.7 x 75.8 )
= 77.1 HP

Motor HP required = 77.1 / 0.9 = 86 HP
Annual cost of operation assuming 7 cents per KWH and 7200 hrs of operation per annum. 0.74 is factor for converting HP to KW. Pl note that unit Electricity charges vary widely across different countries.

= 86 x 0.74 x 0.07 x 7200
= $ 32,075 /-

d) Sizing calculations of ID Fan :
Induced draft fan or ID Fan is required to evacuate the exhaust gases from Boiler to atmosphere through Duct collectors and chimney. Usually ID should take care of draft loss across the Boiler from furnace to Air heater and then draft loss across Duct Collectors like ESP, Wet Scrubber or mechanical type Cyclone dust collectors .etc.
Total wet gases, Kg/hr = 79,228

Gas Density = 1.3265 Kg/Nm3
Therefore, gas flow in Nm3/hr = 79,228 / 1.3265
= 59227 Nm3/hr
= 16.6 Nm3/s

Gas flow at 150C in m3/s = 16.6 x (273+150)/273 = 25.7
ID Fan capacity taking 20% margin on flow = 25.7 x 1.2
= 30 m3/s

ID Fan static Head = Draft Loss in (Boiler + Duct + Dust collector)
= 150 + 50 + 50 mm WC : Approximate
= 250 mmWC

Taking 20% margin on head, ID Fan head = 250 * 1.2 = 300 mm WC

Power requirements of ID Fan :
Let us assume Fan efficiency as 75% and Motor Efficiency as 90%.
Power required for ID Fan, BHP = Flow x Head / ( Efficiency x 75.8 )
= 30 x 300 / ( 0.75 x 75.8 )
= 158 HP

Motor HP required = 158 / 0.9 = 175 HP
Annual cost of operation assuming 7 cents per KWH and 7200 hrs of operation per annum. 0.74 is factor for converting HP to KW. Pl note that unit Electricity charges vary widely across different countries.
= 175 x 0.74 x 0.07 x 7200 = $ 65,268 /-

Is This Answer Correct ?    18 Yes 16 No



Post New Answer       View All Answers


Please Help Members By Posting Answers For Below Questions

What is a positive displacement pump?

1005


sir i am working in CIM Technologies , AS DESIGN ENGINEER, I WANT TO PREPARER FOR INTERVIEW TO THE DESIGN PLEASE SUGGEST HOW TO PREPARE FOR INTERVIEW

1939


Which rays are produced by cobalt-60 in industrial radiography ?

1132


previous question papers for group 2

1839


HI, I am Darshan S D completed BE in Mechanical & also completed my MBA in Finance & Marketing.Presently i am working in Geodis Global Solutions which gives support to the IBM, as a logistics coordinator. i have a plan to do SAP but confused which Specilisation to do ie whether in Finance or Material management. Also scared whether it is right for me to do that, is that will help me in getting good job. what is the future opportunity and present job position in the market.... pld kindly help me to know...

1880


What are the automatic tripping devices of diesel generator?

1829


why we transfer FA(full arc) to PA(partial arc) in steam turbine at specified load?

2205


Name the only five parts of lathe machine?

1011


What is the purpose of a setting tank?

2108


How does hydraulics work?

990


Can we integrate the C programming with Pro-e (modelling software)through application program?

1974


about basic questions ofpiping engg

1817


What is the importance of tolerance in engineering?

1029


what is the pattern of written test for the post of trainee mechanical engg.

2153


Is it a good sign when thick smoke comes out of a Oil vapor extraction fan of a steam turbine oil sump? What does it indicates?

881